×

On rapidly oscillating solutions of a nonlinear elliptic equation. (English) Zbl 1481.35025

Summary: The aim of this article is to examine the solutions of the boundary value problem of the nonlinear elliptic equation \(\varepsilon^2\Delta u=f(u)\). We describe the asymptotic behavior as \(\varepsilon\) tends to zero of the solutions on a spherical crown \(C\) of \(\mathbb R^N\), \((N\geq 2)\) in a direct non-classical formulation which suggests easy proofs. We propose to look for interesting solutions in the case where the condition at the edge of the crown is a constant function. Our results are formulated in classical mathematics. Their proofs use the stroboscopic method which is a tool of the nonstandard asymptotic theory of differential equations.

MSC:

35B25 Singular perturbations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35J25 Boundary value problems for second-order elliptic equations
35J61 Semilinear elliptic equations
Full Text: DOI

References:

[1] Bendaas, S.—Alaa, N.: Periodic wave shock solutions of Burgers equations, A new approach, Int. J. Nonlinear Anal. Appl. 10(1) (2019), 119-129. · Zbl 1449.35375
[2] Bendaas, S.: Confluence of shocks in Burgers equation. A new approach, Int. J. Differ. Equ. 14(N4) (2015), 369-382. · Zbl 1331.35228
[3] Bendaas, S.: Boundary value problems for Burgers equations through nonstandard analysis, Appl. Math. N6 (2015), 1086-1098.
[4] Bendaas, S.: Léquation de Burgers avec un terme dissipatif. Une approche non standard, An. Univ. Oradea Fasc. Mat. 15 (2008), 239-252. · Zbl 1199.35311
[5] Bendaas, S.: Quelques Applications de l’A.N.S aux E.D.P, Thèse de Doctorat. Université de Haute Alsace, France, 1994.
[6] Callot, J. L.: Stroboscopie infinitésimale, (Strasbourg-Obernai, 1995), 95-124. Prépubl. Inst. Rech. Math. Av., 1995/13, Univ.Louis Pasteur, Strasbourg, 1995.
[7] Callot, J. L.—Sari, T.: Stroboscopie infinitésimale et moyennisation dans les systèmes déquations différentielles à solutions rapidement oscillantes. In: Outils et modèles mathématiques pour l’automatique, l’analyse des systèmes et le traitement du signal (I. D. Landau, ed.), vol. 3, Editions du CNRS, 1983, pp. 345-353.
[8] Carrier, G. F.—Pearson, C. E.: Ordinary Differential Equations, Blaisdell Waltham, 1968. · Zbl 0165.40601
[9] De Jager, E. M.: Singular Perturbations Problems for linear Differential Equations of Elliptic Type, Arch. Rat. Mech. Anal. 23 (1966). · Zbl 0151.15101
[10] Diener, M.—Lobry, C.: Actes de l’Ecole d’Eté: Analyse Non Standard et Représentation du Réel, Proceeding of the Summer School on Nonstandard Analysis and Representation of the Real, Office des Publications Universitaires, Alger, 1985. · Zbl 0678.26010
[11] Diener, M.—Lobry, C.: Nonstandard Analysis in Practice, Chapters 4 and 10, Universitext, Springer Verlag, 1995. · Zbl 0848.26015
[12] Fife, P. C.—Greenlee, W. M.: Interior Transition Layers for Elliptic Boundary Value Problems with a Small parameter, Russian Math. Surveys 29(4) (1974), 130. · Zbl 0309.35035
[13] Lakrib, M.—Sari, T.: Time averaging for ordinary differental equations and retard functional differential equations, Electron. J. Differential Equations 2010(40) (2010), http://ejde.math.txstate.edu or http://ejde.math.unt.edu. · Zbl 1201.34128
[14] Lutz, R.—Sari, T.: Application of Non Standard Analysis to Boundary Value Problems in Singular Perturbations Theory, Proceeding Oberwolfach 1981, edited by W. Eckhaus and E. M. Dejager, Lectures Notes in Math. 942, Springer Verlag Berlin, 1982, pp. 113-135. · Zbl 0518.34049
[15] Lutz, R.—Goze, M.: Nonstandard Analysis: A Practical Guide with Applications, Lecture Notes in Math. 881, Springer-Verlag, Berlin, 1981. · Zbl 0506.03021
[16] Malley, R. E. O.: Phase-plane solutions to some singular perturbation problem, J. Math. Anal. Appl. 54 (1976), 449-466. · Zbl 0334.34050
[17] Nelson, E.: Internal Set Theory: a new approach to nonstandard analysis, Bull. Amer. Math. Soc. 83(6) (1977), 1165-1198. · Zbl 0373.02040
[18] Nouri, Z.—Bendaas, S.—Kadem, H. E.: N wave and periodic wave solutions for Burgers equations, Int. J. Anal. Appl. 18(2) (2020), 304-318.
[19] Reeb, G.: Equations Différentielles et Analyse Non Standard, Proceeding of the IV-Int Colloque on Differential Geometry, Santiago de Compostella, 1978.
[20] Robinson, A.: Nonstandard Analysis, American Elsevier, New York, 1974.
[21] Sari, T.: Moyennisation Dans les Systè mes Différentiels à Solutions Rapidement Oscillantes, Thèse de Doctorat, Mulhouse, 1983.
[22] Sari, T.: Nonstandard perturbation theory of differential equations, presented as an invited talk at the International Research Symposium on Nonstandard Analysis and Its Applications, ICMS, Edinburgh 1996, http://www.math.uha.fr/sari/papers/icms1996.pdf.
[23] van den Berg, I. P.: Nonstandard Asymptotic Analysis. Lecture Notes in Math. 1249, Springer-Verlag, Berlin, 1987. · Zbl 0633.41001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.