×

Global well-posedness for the fractional Boussinesq-Coriolis system with stratification in a framework of Fourier-Besov type. (English) Zbl 1484.76083

The authors prove the global well-posedness for the fractional Boussinesq-Coriolis system with stratification in a Fourier-Besov space, based on Morrey spaces.
The result is uniform with respect to the Coriolis number and to the stratification parameter.
The authors cover the critical case of the dissipation, namely the half-Laplacian, in which the nonlocal dissipation has the same differential order as the nonlinearity and balances critically the scaling of the quadratic nonlinearities.
They also obtain well-posedness results in Fourier-Besov-Morrey spaces for the fractional Navier-Stokes-Coriolis system as well as for the Navier-Stokes equations with critical dissipation.

MSC:

76U05 General theory of rotating fluids
76U60 Geophysical flows
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D50 Stratification effects in viscous fluids
35Q30 Navier-Stokes equations

References:

[1] de Almeida, MF; Ferreira, LCF; Lima, LSM, Uniform global well-posedness of the Navier-Stokes-Coriolis system in a new critical space, Mathematische Zeitschrift, 287, 3-4, 735-750 (2017) · Zbl 1379.35220 · doi:10.1007/s00209-017-1843-x
[2] Abbassi, A., Allalou, C., Oulha, Y.: Well-posedness and stability for the viscous primitive equations of geophysics in critical Fourier-Besov-Morrey spaces, preprint (2020) · Zbl 1462.35402
[3] Aurazo-Alvarez, L.L.: On long-time solutions for Boussinesq-type models in Besov and Fourier-Besov-Morrey spaces, Ph.D. Thesis, University of Campinas (Advisor: L. C. F. Ferreira) (2020)
[4] Babin, A.; Mahalov, A.; Nicolaenko, B., On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations, Theor. Comput. Fluid Dyn., 9, 223-251 (1997) · Zbl 0912.76092 · doi:10.1007/s001620050042
[5] Babin, A.; Mahalov, A.; Nicolaenko, B., Strongly stratified limit of 3D primitive equations in an infinite layer, Contemp. Math., 283, 1-11 (2001) · Zbl 1001.76030 · doi:10.1090/conm/283/04709
[6] Babin, A.; Mahalov, A.; Nicolaenko, B., Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Indiana Univ. Math. J., 48, 3, 1133-1176 (1999) · Zbl 0932.35160
[7] Bourgain, J.; Pavlovic, N., Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255, 9, 2233-2247 (2008) · Zbl 1161.35037 · doi:10.1016/j.jfa.2008.07.008
[8] Cannone, M., A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13, 3, 515-541 (1997) · Zbl 0897.35061 · doi:10.4171/RMI/229
[9] Charve, F., Asymptotics and vortex patches for the quasigeostrophic approximation, J. Math. Pures Appl., 85, 4, 493-539 (2006) · Zbl 1091.35066 · doi:10.1016/j.matpur.2005.10.002
[10] Chemin, J.; Desjardins, B.; Gallagher, I.; Grenier, E., Mathematical Geophysics, An Introduction to Rotating fluids and the Navier-Stokes Equations (2006), Oxford: Oxford University Press, Oxford · Zbl 1205.86001 · doi:10.1093/oso/9780198571339.001.0001
[11] Cheskidov, A.; Shvydkoy, R., Ill-posedness for subcritical hyperdissipative Navier-Stokes equations in the largest critical spaces, J. Math. Phys., 53, 115620 (2012) · Zbl 1426.76089 · doi:10.1063/1.4765332
[12] Cushman-Roisin, B., Introduction to Geophysical Fluid Dynamics (1994), Hoboken: Prentice Hall, Hoboken · Zbl 1319.86001
[13] Deng, C.; Yao, X., Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in \({\dot{F}}_{\frac{3}{\alpha -1}}^{-\alpha , r} \), Discrete Contin. Dyn. Syst. A, 34, 2, 437-459 (2014) · Zbl 1368.76013
[14] El Barakaa, A.; Toumlilin, M., Uniform well-posedness and stability for fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces, Open J. Math. Anal., 3, 1, 70-89 (2019) · doi:10.30538/psrp-oma2019.0034
[15] Ferreira, LCF; Angulo-Castillo, V., Global well-posedness and asymptotic behavior for Navier-Stokes-Coriolis equations in homogeneous Besov spaces, Asymptot. Anal., 112, 1-2, 37-58 (2019) · Zbl 1418.35291 · doi:10.3233/ASY-181496
[16] Ferreira, LCF; Lima, LSM, Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces, Monatshefte für Math., 175, 491-509 (2014) · Zbl 1302.35316 · doi:10.1007/s00605-014-0659-6
[17] Foias, C.: Statistical study of Navier-Stokes equations, I. Rend. Sem. Mat. Univ. Padova 48, 219-348 (1972) · Zbl 0283.76017
[18] Foias, C., Statistical study of Navier-Stokes equations, II., Rend. Sem. Mat. Univ. Padova, 49, 9-123 (1973) · Zbl 0283.76018
[19] Giga, Y.; Inui, K.; Mahalov, A.; Saal, J., Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J., 57, 6, 2775-2791 (2008) · Zbl 1159.35055 · doi:10.1512/iumj.2008.57.3795
[20] Giga, Y.; Miyakawa, T., Navier-Stokes flow in \(\mathbb{R}^3\) with measures as initial vorticity and Morrey spaces, Commun. Partial Differ. Equ., 14, 5, 577-618 (1989) · Zbl 0681.35072 · doi:10.1080/03605308908820621
[21] Hieber, M.; Shibata, Y., The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265, 2, 481-491 (2010) · Zbl 1190.35175 · doi:10.1007/s00209-009-0525-8
[22] Iwabuchi, T.; Mahalov, A.; Takada, R., Global solutions for the incompressible rotating stably stratified fluids, Math. Nachr., 290, 4, 613-631 (2017) · Zbl 1360.76075 · doi:10.1002/mana.201500385
[23] Iwabuchi, T.; Takada, R., Global solutions for the Navier-Stokes equations in the rotational framework, Math. Ann., 357, 2, 727-741 (2013) · Zbl 1290.35185 · doi:10.1007/s00208-013-0923-4
[24] Iwabuchi, T.; Takada, R., Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal., 267, 5, 1321-1337 (2014) · Zbl 1296.35119 · doi:10.1016/j.jfa.2014.05.022
[25] Kato, T., Strong \(L^p\)-solutions of the Navier-Stokes equation in \(\mathbb{R}^m \), with applications to weak solutions, Math. Z., 187, 4, 471-480 (1984) · Zbl 0545.35073 · doi:10.1007/BF01174182
[26] Kato, T., Strong solutions of the Navier-Stokes equations in Morrey spaces, Bol. Soc. Bras. Mat., 22, 2, 127-55 (1992) · Zbl 0781.35052 · doi:10.1007/BF01232939
[27] Koba, H.; Mahalov, A.; Yoneda, T., Global well-posedness for the rotating Navier-Stokes-Boussinesq equations with stratification effects, Adv. Math. Sci. Appl., 22, 61-90 (2012) · Zbl 1283.35086
[28] Konieczny, P.; Yoneda, T., On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differ. Equ., 250, 10, 3859-3873 (2011) · Zbl 1211.35218 · doi:10.1016/j.jde.2011.01.003
[29] Koch, H.; Tataru, D., Well-posedness for the Navier-Stokes equations, Adv. Math., 157, 1, 22-35 (2001) · Zbl 0972.35084 · doi:10.1006/aima.2000.1937
[30] Kozono, H.; Yamazaki, M., Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Commun. Partial Differ. Equ., 19, 5-6, 959-1014 (1994) · Zbl 0803.35068 · doi:10.1080/03605309408821042
[31] Lemarie-Rieusset, PG, Recent developments in the Navier-Stokes equations (2002), London: Chapman and Hall, London · Zbl 1034.35093 · doi:10.1201/9781420035674
[32] Lions, J-L, Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathématiques (1969), Paris: Dunod, Paris · Zbl 0189.40603
[33] Mazzucato, AL, Besov-Morrey spaces: function space theory and applications to non-linear PDE, Trans. Am. Math. Soc., 355, 4, 1297-1364 (2003) · Zbl 1022.35039 · doi:10.1090/S0002-9947-02-03214-2
[34] Sun, J.; Cui, S., Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier-Besov spaces, Nonlinear Anal. Real World Appl., 48, 445-465 (2019) · Zbl 1453.35152 · doi:10.1016/j.nonrwa.2019.02.003
[35] Wang, B., Ill-posedness for the Navier-Stokes equations in critical Besov spaces \({\dot{B}}_{\infty , q}^{-1} \), Adv. Math., 268, 350-372 (2015) · Zbl 1316.35232 · doi:10.1016/j.aim.2014.09.024
[36] Wang, W.; Wu, G., Global mild solution of the generalized Navier-Stokes equations with the Coriolis force, Appl. Math. Lett., 76, 181-186 (2018) · Zbl 1379.35218 · doi:10.1016/j.aml.2017.09.001
[37] Wang, W.; Wu, G., Global mild solution of stochastic generalized Navier-Stokes, Acta Math. Sin., 34, 11, 1635-1647 (2018) · Zbl 1406.35305 · doi:10.1007/s10114-018-7482-2
[38] Wu, J., Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov Spaces, Commun. Math. Phys., 263, 803-831 (2005) · Zbl 1104.35037 · doi:10.1007/s00220-005-1483-6
[39] Xiao, W., Chen, J., Fan, D., Zhou, X.: Global well-posedness and long time decay of fractional Navier-Stokes equations in Fourier-Besov spaces. In: Abstract and Applied Analysis, ID 463639 (2014) · Zbl 1472.35273
[40] Yu, X.; Zhai, Z., Well-posedness for fractional Navier-Stokes equations in the largest critical spaces \({\dot{\mathbb{B}}}_{\infty ,\infty }^{-(2\beta -1)}(R^n)\), Math. Methods Appl. Sci., 35, 676-683 (2012) · Zbl 1250.35138 · doi:10.1002/mma.2520
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.