×

An equilibrated a posteriori error estimator for an interior penalty discontinuous Galerkin approximation of the \(p\)-Laplace problem. (English) Zbl 1481.65227

The paper deals with the numerical solution of \(p\)-Laplace equation (\(p>1\)) by the interior penalty discontinuous Galerkin method. The equilibrated a posteriori error estimator are derived and the upper bound for the discretization error in the broken \(W^{1,p}\)-norm are proved. The relationship with a residual-type a posteriori error estimator is established as well. Numerical results for a \(L\)-shaped domain illustrate the performance of both estimators.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] C. Amrouche and N. E. H. Seloula, L^p-theory for vector potentials and Sobolev’s inequalities for vector fields: Application to the Stokes equations with pressure boundary conditions. Math. Models Meth. Appl. Sci. 23 (2013), 37-92. · Zbl 1260.35101
[2] T. Ando, Contractive projections in L^p spaces. Pacific J. Math. 17 (1966), 391-405. · Zbl 0192.23304
[3] D. Arnold, F. Brezzi, B. Cockburn, and D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749-1779. · Zbl 1008.65080
[4] J. W. Barrett and W. B. Liu, Finite element approximation of the p-Laplacian. Math. Comput. 61 (1993), 523-537. · Zbl 0791.65084
[5] L. Belenki, L. Diening, and C. Kreuzer, Optimality of an adaptive finite element method for the p-Laplacian equation. IMA J. Numer. Anal. 32 (2012), 484-510. · Zbl 1245.65156
[6] C. Bi and Y. Lin, Discontinuous Galerkin method for monotone nonlinear elliptic problems. Int. J. Numer. Anal. Mod. 4 (2012), 999-1024. · Zbl 1268.65149
[7] M. Bildhauer and S. Repin, Estimates for the deviation from exact solutions of variational problems with power growth functionals. Zapiski Nauchnych Seminarov POMI336 (2006), 5-24. · Zbl 1136.35042
[8] D. Braess, Finite Elements, Theory, Fast Solvers and Applications in Solid Mechanics. 3rd edition. Cambridge University Press, Cambridge, 2007. · Zbl 1118.65117
[9] D. Braess, T. Fraunholz, and R. H. W. Hoppe, An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 52 (2014), 2121-2136. · Zbl 1302.65239
[10] D. Braess, R. H. W. Hoppe, and C. Linsenmann, A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation. ESAIM: M2AN52 (2019), 2479-2504. · Zbl 1419.31004
[11] D. Braess, V. Pillwein, and J. Schöberl, Equilibrated residual error estimates are p-robust. Comp. Meth. Applied Mech. Engrg. 198 (2009), 1189-1197. · Zbl 1157.65483
[12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, Berlin-Heidelberg-New York, 1991. · Zbl 0788.73002
[13] A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29 (2009), 827-855. · Zbl 1181.65094
[14] E. Burman and A. Ern, Discontinuous Galerkin approximations with discrete variational principle for the nonlinear Laplacian. C. R. Acad. Sci. Paris Ser. I346 (2008), 1013-1016. · Zbl 1152.65073
[15] R. Bustinza, G.N. Gatica, and B. Cockburn, An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems. J. Sci. Comput. 22/23 (2005), 147-185. · Zbl 1065.76133
[16] Z. Cai and S. Zhang, Flux recovery and a posteriori error estimators: Conforming elements for scalar elliptic equations. SIAM J. Numer. Anal. 48 (2010), 578-602. · Zbl 1230.65117
[17] Z. Cai and S. Zhang, Robust equilibrated residual error estimator for diffusion problems: conforming elements. SIAM J. Numer. Anal. 50 (2012), 151-170. · Zbl 1253.65175
[18] C. Carstensen and R. Klose, A posteriori finite element control for the p-Laplace problem. SIAM J. Sci. Comput. 25 (2003), 792-814. · Zbl 1050.65101
[19] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, 2002.
[20] S. Cochez-Dhondt and S. Nicaise, Equilibrated error estimators for discontinuous Galerkin methods. Numer. Methods Partial Differ. Equations24 (2008), 1236-1252. · Zbl 1160.65056
[21] B. Cockburn and J. Shen, A hybridizable discontinuous Galerkin method for the p-Laplacian. SIAM J. Sci. Comput. 38 (2016), 545-566. · Zbl 1382.65383
[22] L. M. Del Pezzo, A. L. Lombardi, and S. Martinez, Interior Penalty Discontinuous Galerkin FEM for the p(x)-Laplacian. SIAM J. Numer. Anal. 50 (2012), 2497-2521. · Zbl 1264.65094
[23] L. Diening, D. Kröner, M. Ruzicka, and I. Toulopoulos, A local discontinuous Galerkin approximation for systems with p-structure. IMA J. Numer. Anal. 34 (2013), 1447-1488. · Zbl 1305.65227
[24] L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46 (2008), 614-638. · Zbl 1168.65060
[25] D. A. DiPietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin-Heidelberg-New York, 2012. · Zbl 1231.65209
[26] M. Dobrowolski, On finite element methods for nonlinear elliptic problems with corners. In: Springer Lecture Notes in Mathematics, Vol. 1121. Springer, Berlin-Heidelberg-New York, 1986, pp. 85-103. · Zbl 0564.65072
[27] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996), 1106-1124. · Zbl 0854.65090
[28] M. R. Dostanić, Inequality of Poincaré-Friedrichs on L^p spaces. Matematički Vesnik 57 (2005), 11-14. · Zbl 1105.26012
[29] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. SIAM, Philadelphia, 1999. · Zbl 0939.49002
[30] A. Ern and J. L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN51 (2017), 1367-1385. · Zbl 1378.65041
[31] A. Ern, S. Nicaise, and M. Vohralík, An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Acad. Sci. Paris Ser. I345 (2007), 709-712. · Zbl 1129.65085
[32] A. Ern and M. Vohralík, Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids. C. R. Acad. Sci. Paris Ser. I347 (2009), 4441-4444.
[33] R. Eymard and C. Guichard, Discontinuous Galerkin gradient discretisations for the approximation of second-order differential operators in divergence form. Comput. Appl. Math. 37 (2018), 4023-4054. · Zbl 1402.65156
[34] M. Fuchs and S. Repin, Estimates for the deviation from the exact solutions of variational problems modeling certian classes of generalized Newtonian fluids. Math. Methods Appl. Sci. 29 (2010), 2225-2244. · Zbl 1105.76049
[35] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985. · Zbl 0695.35060
[36] R. H. W. Hoppe, G. Kanschat, and T. Warburton, Convergence analysis of an adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 47 (2009), 534-550. · Zbl 1189.65274
[37] P. Huston, J. Robson, and E. Süli, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: the scalar case. IMA J. Numer. Anal. 25 (2005), 726-749. · Zbl 1084.65116
[38] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003), 2374-2399. · Zbl 1058.65120
[39] O. A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007), 641-665. · Zbl 1140.65083
[40] R. Lazarov, S. Repin, and S. Tomar, Functional a posteriori error estimates for discontinuous Galerkin approximations of elliptic problems. Numer. Methods Partial Differ. Equ. 25 (2009), 952-971. · Zbl 1167.65451
[41] W. Liu and N. Yan, Quasi-norm local error estimators for p-Laplacian. SIAM J. Numer. Anal. 39 (2001), 100-127. · Zbl 1001.65119
[42] W. Liu and N. Yan; On quasi-norm interpolation error estimation and a posteriori error estimates for p-Laplacian. SIAM J. Numer. Anal. 40 (2002), 1870-1895. · Zbl 1041.65081
[43] C. Ortner and E. Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45 (2007), 1370-1395. · Zbl 1146.65070
[44] W. Qiu and K. Shi, Analysis on an HDG method for the p-Laplacian equations. J. Sci. Comp. 80 (2019), 1019-1032. · Zbl 1416.65463
[45] S. I. Repin, A posteriori error estimation for variational problems with power growth functionals based on duality theory. Zapiski Nauchnych Seminarov POMI249 (1997), 244-255.
[46] S. I. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp. 69 (2000), 481-500. · Zbl 0949.65070
[47] S. I. Repin, A Posteriori Estimates for Partial Differential Equations. De Gruyter, Berlin, 2008. · Zbl 1162.65001
[48] S. I. Repin and S. Tomar, Guaranteed and robust error bounds for nonconforming approximations of elliptic problems. IMA J. Numer. Anal. 31 (2011), 597-615. · Zbl 1234.65039
[49] L. Tartar, Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin-Heidelberg-New York, 2007. · Zbl 1126.46001
[50] A. Veeser, Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 92 (2002), 743-770. · Zbl 1016.65083
[51] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford, 2013. · Zbl 1279.65127
[52] M. Vohralik, A posteriori error estimates for efficiency and error control in numerical simulations. Lecture Notes NM 497. Université Pierre et Marie Curie, Paris, 2015.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.