×

Switching defence for switched systems under malicious attacks: a Stackelberg game approach. (English) Zbl 1478.93245

Summary: The security issue of switched systems is researched from a noncooperative dynamic game-theoretic perspective in this paper. A Stackelberg game is developed for the switched autonomous system suffering malicious attacks, and the Stackelberg equilibrium switching and attack strategies are constructed respectively. Afterwards, the proposed game-theoretic approach is extended to switched control systems. A Stackelberg Nash game is consequently established to characterize the hierarchical decision making processes, where the controller and the attacker are the followers who simultaneously make their own decisions, and a sufficient condition is provided for the construction of the Stackelberg Nash equilibrium. Finally, a continuous stirred tank reactor is exploited to validate the effectiveness and applicability of the proposed results.

MSC:

93B70 Networked control
93C83 Control/observation systems involving computers (process control, etc.)
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
91A65 Hierarchical games (including Stackelberg games)
91A80 Applications of game theory
Full Text: DOI

References:

[1] Cai, K.; Zhang, R.; Wonham, W. M., Relative observability and coobservability of timed discrete-event systems, IEEE Trans. Automat. Control, 61, 11, 3382-3395 (2016) · Zbl 1359.93061
[2] Yin, X.; Lafortune, S., A general approach for optimizing dynamic sensor activation for discrete event systems, Automatica, 105, 376-383 (2019) · Zbl 1429.93231
[3] Zhang, R.; Cai, K., Supervisor localization of timed discrete-event systems under partial observation, IEEE Trans. Automat. Control, 65, 1, 295-301 (2020) · Zbl 1483.93420
[4] Ji, Y.; Yin, X.; Lafortune, S., Optimal supervisory control with mean payoff objectives and under partial observation, Automatica, 123, Article 109359 pp. (2021) · Zbl 1461.93311
[5] Liberzon, D., Switching in Systems and Control (2003), Birkhäuser: Birkhäuser Boston, MA · Zbl 1036.93001
[6] Sun, Z.; Ge, S. S., Switched Linear Systems: Control and Design (2005), Springer-Verlag: Springer-Verlag London · Zbl 1075.93001
[7] Zhao, J.; Hill, D. J., Dissipativity theory for switched systems, IEEE Trans. Automat. Control, 53, 4, 941-953 (2008) · Zbl 1367.93452
[8] Sang, H.; Zhao, J., Passivity and passification for switched T-S fuzzy systems with sampled-data implementation, IEEE Trans. Fuzzy Syst., 28, 7, 1219-1229 (2020)
[9] Yang, D.; Zhao, J., Dissipativity for switched LPV systems and its application: A parameter and dwell time-dependent multiple storage functions method, IEEE Trans. Syst. Man Cybern.: Syst., 50, 2, 502-513 (2020)
[10] Liu, B.; Hill, D. J.; Sun, Z., Input-to-state-\( \mathcal{KL} \)-stability and criteria for a class of hybrid dynamical systems, Appl. Math. Comput., 326, 124-140 (2018) · Zbl 1426.93294
[11] Sun, X.-M.; Wang, W., Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics, Automatica, 48, 9, 2359-2364 (2012) · Zbl 1257.93089
[12] Zhao, J.; Hill, D. J., On stability, \( L_2\)-gain and \(H_\infty\) control for switched systems, Automatica, 44, 5, 1220-1232 (2008) · Zbl 1283.93147
[13] Long, L.; Zhao, J., \( H_\infty\) control of switched nonlinear systems in \(p\)-normal form using multiple Lyapunov functions, IEEE Trans. Automat. Control, 57, 5, 1285-1291 (2012) · Zbl 1369.93253
[14] Deaecto, G. S.; Bolzern, P.; Galbusera, L.; Geromel, J. C., \( H_2\) and \(H_\infty\) control of time-varying delay switched linear systems with application to sampled-data control, Nonlinear Anal. Hybrid Syst., 22, 43-54 (2016) · Zbl 1344.93041
[15] Xie, J.; Zhao, J., \( H_\infty\) model reference adaptive control for switched systems based on the switched closed-loop reference model, Nonlinear Anal. Hybrid Syst., 27, 92-106 (2018) · Zbl 1378.93062
[16] Swikir, A.; Zamani, M., Compositional synthesis of symbolic models for networks of switched systems, IEEE Control Syst. Lett., 3, 4, 1056-1061 (2019)
[17] Nejati, A.; Soudjani, S.; Zamani, M., Compositional construction of control barrier certificates for large-scale stochastic switched systems, IEEE Control Syst. Lett., 4, 4, 845-850 (2020)
[18] Papadopoulos, A. V.; Terraneo, F.; Leva, A.; Prandini, M., Switched control for quantized feedback systems: Invariance and limit cycle analysis, IEEE Trans. Automat. Control, 63, 11, 3775-3786 (2018) · Zbl 1423.93251
[19] Li, C.; Lian, J., Event-triggered feedback stabilization of switched linear systems using dynamic quantized input, Nonlinear Anal. Hybrid Syst., 31, 292-301 (2019) · Zbl 1408.93119
[20] Bianchi, F.; Prandini, M.; Piroddi, L., A randomized two-stage iterative method for switched nonlinear systems identification, Nonlinear Anal. Hybrid Syst., 35, Article 100818 pp. (2020) · Zbl 1433.93142
[21] Sun, X.-M.; Liu, G.-P.; Rees, D.; Wang, W., Delay-dependent stability for discrete systems with large delay sequence based on switching techniques, Automatica, 44, 11, 2902-2908 (2008) · Zbl 1152.93499
[22] Xiang, W.; Xiao, J., Stabilization of switched continuous-time systems with all modes unstable via dwell time switching, Automatica, 50, 3, 940-945 (2014) · Zbl 1298.93283
[23] Zhao, X.; Shi, P.; Yin, Y.; Nguang, S. K., New results on stability of slowly switched systems: A multiple discontinuous Lyapunov function approach, IEEE Trans. Automat. Control, 62, 7, 3502-3509 (2017) · Zbl 1370.34108
[24] Li, Z.; Ma, D.; Zhao, J., Dynamic event-triggered \(L_\infty\) control for switched affine systems with sampled-data switching, Nonlinear Anal. Hybrid Syst., 39, Article 100978 pp. (2021) · Zbl 1478.93409
[25] Sui, T.; Mo, Y.; Marelli, D.; Sun, X.-M.; Fu, M., The vulnerability of cyber-physical system under stealthy attacks, IEEE Trans. Automat. Control, 1 (2020)
[26] Feng, S.; Tesi, P., Resilient control under Denial-of-Service: Robust design, Automatica, 79, 42-51 (2017) · Zbl 1371.93124
[27] Zhang, H.; Qi, Y.; Wu, J.; Fu, L.; He, L., DoS attack energy management against remote state estimation, IEEE Trans. Control Netw. Syst., 5, 1, 383-394 (2018) · Zbl 1507.93242
[28] Feng, S.; Cetinkaya, A.; Ishii, H.; Tesi, P.; Persis, C. D., Networked control under DoS attacks: Tradeoffs between resilience and data rate, IEEE Trans. Automat. Control, 66, 1, 460-467 (2021) · Zbl 1536.93321
[29] Pang, Z.-H.; Liu, G.-P.; Zhou, D.; Hou, F.; Sun, D., Two-channel false data injection attacks against output tracking control of networked systems, IEEE Trans. Ind. Electron., 63, 5, 3242-3251 (2016)
[30] Ge, X.; Han, Q.-L.; Zhang, X.-M.; Ding, D.; Yang, F., Resilient and secure remote monitoring for a class of cyber-physical systems against attacks, Inform. Sci., 512, 1592-1605 (2020) · Zbl 1461.93183
[31] Lian, J.; Huang, X.; Han, Y., Observer-based stability of switched system under jamming attack and random packet loss, IET Control Theory Appl., 14, 9, 1183-1192 (2020) · Zbl 07907190
[32] Qu, H.; Zhao, J., Stabilisation of switched linear systems under denial of service, IET Control Theory Appl., 14, 11, 1438-1444 (2020) · Zbl 07907098
[33] Hu, J.; Lee, D.-H.; Shen, J., Stabilizing switched linear systems under adversarial switching, (2015 54th IEEE Conference on Decision and Control. 2015 54th IEEE Conference on Decision and Control, CDC (2015)), 2875-2880
[34] Hu, J.; Shen, J.; Lee, D., Resilient stabilization of switched linear control systems against adversarial switching, IEEE Trans. Automat. Control, 62, 8, 3820-3834 (2017) · Zbl 1373.93285
[35] Liu, S.; Mashayekh, S.; Kundur, D.; Zourntos, T.; Butler-Purry, K., A framework for modeling cyber-physical switching attacks in smart grid, IEEE Trans. Emerg. Top. Comput., 1, 2, 273-285 (2013)
[36] Hammad, E.; Khalil, A. M.; Farraj, A.; Kundur, D.; Iravani, R., A class of switching exploits based on inter-area oscillations, IEEE Trans. Smart Grid, 9, 5, 4659-4668 (2018)
[37] Ramasubramanian, B.; Cleaveland, R.; Marcus, S. I., Opacity for switched linear systems: Notions and characterization, (2017 IEEE 56th Annual Conference on Decision and Control. 2017 IEEE 56th Annual Conference on Decision and Control, CDC (2017)), 5310-5315
[38] Liu, S.; Swikir, A.; Zamani, M., Compositional verification of initial-state opacity for switched systems, (2020 59th IEEE Conference on Decision and Control. 2020 59th IEEE Conference on Decision and Control, CDC (2020)), 2146-2151
[39] Sinha, A.; Fang, F.; An, B.; Kiekintveld, C.; Tambe, M., Stackelberg Security Games: Looking Beyond a Decade of Success (2018), IJCAI
[40] An, B.; Tambe, M.; Sinha, A., Stackelberg security games (SSG): Basics and application overview, (Improving Homeland Security Decisions (2017), Cambridge University Press Cambridge), 485
[41] Kar, D.; Nguyen, T. H.; Fang, F.; Brown, M.; Sinha, A.; Tambe, M.; Jiang, A. X., Trends and applications in Stackelberg security games, (Handbook of Dynamic Game Theory (2017), Springer International Publishing), 1-47
[42] Zhu, M.; Martínez, S., Stackelberg-game analysis of correlated attacks in cyber-physical systems, (Proceedings of the 2011 American Control Conference (2011), IEEE), 4063-4068
[43] Sanjab, A.; Saad, W., Data injection attacks on smart grids with multiple adversaries: A game-theoretic perspective, IEEE Trans. Smart Grid, 7, 4, 2038-2049 (2016)
[44] Li, Y.; Shi, D.; Chen, T., False data injection attacks on networked control systems: A Stackelberg game analysis, IEEE Trans. Automat. Control, 63, 10, 3503-3509 (2018) · Zbl 1425.91092
[45] Liu, H., SINR-based multi-channel power schedule under DoS attacks: A Stackelberg game approach with incomplete information, Automatica, 100, 274-280 (2019) · Zbl 1411.91163
[46] Yuan, Y.; Sun, F.; Liu, H., Resilient control of cyber-physical systems against intelligent attacker: A hierarchal Stackelberg game approach, Internat. J. Systems Sci., 47, 9, 2067-2077 (2016) · Zbl 1345.93049
[47] Branicky, M. S.; Borkar, V. S.; Mitter, S. K., A unified framework for hybrid control: model and optimal control theory, IEEE Trans. Automat. Control, 43, 1, 31-45 (1998) · Zbl 0951.93002
[48] Henderson, H. V.; Searle, S. R., On deriving the inverse of a sum of matrices, SIAM Rev., 23, 1, 53-60 (1981) · Zbl 0451.15005
[49] Başar, T.; Olsder, G. J., Dynamic Noncooperative Game Theory (1998), SIAM
[50] Engwerda, J., LQ Dynamic Optimization and Differential Games (2005), John Wiley & Sons
[51] Barkhordari Yazdi, M.; Jahed-Motlagh, M., Stabilization of a CSTR with two arbitrarily switching modes using modal state feedback linearization, Chem. Eng. J., 155, 3, 838-843 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.