×

Robust synchronization of chaotic fractional-order systems with shifted Chebyshev spectral collocation method. (English) Zbl 1515.65258

Summary: In this work, synchronization of fractional dynamics of chaotic system is presented. The suggested dynamics is governed by a system of fractional differential equations, where the fractional derivative operator is modeled by the novel Caputo operator. The nature of fractional dynamical system is non-local which often rules out a closed-form solution. As a result, an efficient numerical method based on shifted Chebychev spectral collocation method is proposed. The error and convergence analysis of this scheme is also given. Numerical results are given for different values of fractional order and other parameters when applied to solve chaotic system, to address any points or queries that may occur naturally.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
93C10 Nonlinear systems in control theory
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] S. K. Agrawal, M. Srivastava and S. Das, Synchronization of fractional order chaotic systems using active control method, Chaos Solitons Fractals 45 (2012), 737-752.
[2] W. M. Ahmad and W. M. Harb, On nonlinear control design for autonomous chaotic systems of integer and fractional orders, Chaos Solitons Fractals 18 (2003), 693-701. · Zbl 1073.93027
[3] W. M. Ahmad and J. C. Sprott, Chaos in fractional-order autonomous nonlinear systems, Chaos Solitons Fractals 16 (2003), 339-351. · Zbl 1033.37019
[4] K. T. Alligood, T. D. Sauer and J. A. Yorke, Chaos: An Introduction to Dynamical Systems, Springer, New York, 2008.
[5] A. Atangana, A novel model for the lassa hemorrhagic fever: Deathly disease for pregnant women, Neural. Comput. Appl. 26 (2015), 1895-1903.
[6] A. T. Azar and S. Vaidyanathan, Advances in Chaos Theory and Intelligent Control, Springer, Cham, 2016. · Zbl 1350.93001
[7] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Ser. Complex. Nonlinearity Chaos 3, World Scientific, Hackensack, 2012. · Zbl 1248.26011
[8] B. Blasius, A. Huppert and L. Stone, Complex dynamics and phase synchronization in spatially extended ecological systems, Nature 399 (1999), 354-359.
[9] A. Bueno-Orovio, D. Kay and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT 54 (2014), no. 4, 937-954. · Zbl 1306.65265
[10] M. Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. R. Astron. Soc. 13 (1967), 529-539.
[11] A. Carpinteri, P. Cornetti and K. M. Kolwankar, Calculation of the tensile and flexural strength of disordered materials using fractional calculus, Chaos Solitons Fractals 21 (2004), 623-632. · Zbl 1049.74790
[12] G. Chen and T. Ueta, Yet another chaotic attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 7, 1465-1466. · Zbl 0962.37013
[13] A. Cloot and J. F. Botha, A generalised groundwater flow equation using the concept of non-integer order derivatives, Water S. A. 32 (2006), 1-7.
[14] K. Diethelm and N. J. Ford, Multi-order fractional differential equations and their numerical solution, Appl. Math. Comput. 154 (2004), no. 3, 621-640. · Zbl 1060.65070
[15] I. Grigorenko and E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett. 91 (2003), Article ID 034101.
[16] S. K. Han, C. Kurrer and Y. Kuramoto, Dephasing and bursting in coupled neural oscillators, Phys. Rev. Lett. 75 (1995), 3190-3193.
[17] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, 2001. · Zbl 0998.26002
[18] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006. · Zbl 1092.45003
[19] M. Lakshmanan and K. Murali, Chaos in Nonlinear Oscillators: Controlling and Synchronization, World Scientific, River Edge, 1996. · Zbl 0868.58058
[20] C. Li and G. Chen, Chaos and hyperchaos in the fractional-order Rössler equations, Phys. A 341 (2004), no. 1-4, 55-61.
[21] C. Li, X. Liao and J. Yu, Synchronization of fractional order chaotic systems, Phys. Rev. E 68 (2003), Article ID 067203.
[22] C. G. Li and G. Chen, Chaos in the fractional order Chen system and its control, Chaos Solitons Fractals 22 (2004), 549-554. · Zbl 1069.37025
[23] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), no. 3, 2108-2131. · Zbl 1193.35243
[24] J. G. Lu, Chaotic dynamics and synchronization of fractional-order Arneodo’s systems, Chaos Solitons Fractals 26 (2005), 1125-1133. · Zbl 1074.65146
[25] R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (2010), no. 5, 1586-1593. · Zbl 1189.92007
[26] R. L. Magin, Fractional calculus in bioengineering. Part 3, Crit. Rev. Biomed. Eng. 32 (2004), 195-377.
[27] Z. Mao and J. Shen, Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients, J. Comput. Phys. 307 (2016), 243-261. · Zbl 1352.65395
[28] R. E. Mickens, Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore, 2005. · Zbl 1079.65005
[29] A. M. Mishra, S. D. Purohit, K. M. Owolabi and Y. D. Sharma, A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus, Chaos Solitons Fractals 138 (2020), Article ID 109953. · Zbl 1490.92108
[30] R. Mittal and S. Pandit, Quasilinearized Scale-3Haar wavelets-based algorithm for numerical simulation of fractional dynamical systems, Eng. Computation 35 (2018), 1907-1931.
[31] J. D. Murray, Mathematical Biology. I: An Introduction, Springer, New York, 2003. · Zbl 1006.92002
[32] J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Springer, New York, 2003. · Zbl 1006.92002
[33] P. A. Naik, J. Zu and K. M. Owolabi, Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Phys. A 545 (2020), Article ID 123816.
[34] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover, New York, 2006.
[35] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer, New York, 2011. · Zbl 1251.26005
[36] K. M. Owolabi, Efficient Numerical Methods for Reaction-Diffusion Problems, VDM, Saarbrücken, 2016.
[37] K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 304-317. · Zbl 1465.65108
[38] K. M. Owolabi, Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann-Liouville derivative, Numer. Methods Partial Differential Equations 34 (2018), no. 1, 274-295. · Zbl 1390.65046
[39] K. M. Owolabi, Riemann-Liouville fractional derivative and application to model chaotic differential equations, Progr. Fract. Differ. Appl. 4 (2018), 99-110.
[40] K. M. Owolabi, Mathematical modelling and analysis of love dynamics: A fractional approach, Phys. A 525 (2019), 849-865. · Zbl 07565831
[41] K. M. Owolabi, Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann-Liouville derivative, Progr. Fract. Differ. Appl. 6 (2020), 1-14.
[42] K. M. Owolabi and A. Atangana, Chaotic behaviour in system of noninteger-order ordinary differential equations, Chaos Solitons Fractals 115 (2018), 362-370. · Zbl 1416.65180
[43] K. M. Owolabi and A. Atangana, Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction—diffusion systems, Comput. Appl. Math. 37 (2018), no. 2, 2166-2189. · Zbl 1513.65414
[44] K. M. Owolabi and A. Atangana, On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems, Chaos 29 (2019), no. 2, Article ID 023111. · Zbl 1409.34016
[45] K. M. Owolabi, J. F. Gómez-Aguilar and B. Karaagac, Modelling, analysis and simulations of some chaotic systems using derivative with Mittag-Leffler kernel, Chaos Solitons Fractals 125 (2019), 54-63. · Zbl 1448.34023
[46] J. H. Park and O. M. Kwon, A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos Solitons Fractals 23 (2005), no. 2, 495-501. · Zbl 1061.93507
[47] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990), no. 8, 821-824. · Zbl 0938.37019
[48] I. Petrás, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Berlin, 2011. · Zbl 1228.34002
[49] E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simul. 40 (2016), 112-128. · Zbl 1524.65676
[50] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. · Zbl 0918.34010
[51] A. G. Radwan, K. Moaddy and S. Momani, Stability and non-standard finite difference method of the generalized Chua’s circuit, Comput. Math. Appl. 62 (2011), no. 3, 961-970. · Zbl 1228.65120
[52] A. G. Radwan, K. Moaddy, K. N. Salama, S. Momani and I. Hashim, Control and switching synchronization of fractional order chaotic systems using active control technique, J. Adv. Res. 5 (2014), 125-132.
[53] M. A. Snyder, Chebyshev Methods in Numerical Approximation, Prentice-Hall, Englewood Cliffs, 1966. · Zbl 0173.44102
[54] E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys. 228 (2009), no. 11, 4038-4054. · Zbl 1169.65126
[55] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer, New York, 1982. · Zbl 0504.58001
[56] J. C. Strikwerda, Partial Difference Schemes and Partial Differential Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2004. · Zbl 1071.65118
[57] D. Tripathi, S. K. Pandey and S. Das, Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel, Appl. Math. Comput. 215 (2010), no. 10, 3645-3654. · Zbl 1352.76131
[58] T. Ueta and G. Chen, Bifurcation analysis of Chen’s equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 10 (2000), no. 8, 1917-1931. · Zbl 1090.37531
[59] Q. Xu and J. S. Hesthaven, Stable multi-domain spectral penalty methods for fractional partial differential equations, J. Comput. Phys. 257 (2014), 241-258. · Zbl 1349.35414
[60] Y. Yu and H.-X. Li, The synchronization of fractional-order Rössler hyperchaotic systems, Phys. A 387 (2008), no. 5-6, 1393-1403.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.