×

On the radical of a Hecke-Kiselman algebra. (English) Zbl 1504.16046

Summary: The Hecke-Kiselman algebra of a finite oriented graph \(\varTheta\) over a field \(K\) is studied. If \(\varTheta\) is an oriented cycle, it is shown that the algebra is semiprime and its central localization is a finite direct product of matrix algebras over the field of rational functions \(K(x)\). More generally, the radical is described in the case of PI-algebras, and it is shown that it comes from an explicitly described congruence on the underlying Hecke-Kiselman monoid. Moreover, the algebra modulo the radical is again a Hecke-Kiselman algebra and it is a finite module over its center.

MSC:

16S15 Finite generation, finite presentability, normal forms (diamond lemma, term-rewriting)
16S36 Ordinary and skew polynomial rings and semigroup rings
16P40 Noetherian rings and modules (associative rings and algebras)
16N20 Jacobson radical, quasimultiplication
16R20 Semiprime p.i. rings, rings embeddable in matrices over commutative rings
20M05 Free semigroups, generators and relations, word problems
20M25 Semigroup rings, multiplicative semigroups of rings
20C08 Hecke algebras and their representations
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)

References:

[1] Aragona, R.; Andrea, AD, Hecke-Kiselman monoids of small cardinality, Semigroup Forum, 86, 32-40 (2013) · Zbl 1267.20077 · doi:10.1007/s00233-012-9422-2
[2] Bergman, GM, The diamond lemma for ring theory, Adv. Math., 29, 178-218 (1978) · Zbl 0326.16019 · doi:10.1016/0001-8708(78)90010-5
[3] Clifford, AH; Preston, GB, The Algebraic Theory of Semigroups, vol. 1 (1964), Providence: Amer. Math. Soc., Providence
[4] Denton, T.: Algebra, Excursions into Combinatorics at q = 0, PhD thesis University of California, Davis. arXiv:1108.4379 (2011)
[5] Forsberg, L.: Effective representations of Hecke-Kiselman monoids of type A. arXiv:1205.0676v4 (2012)
[6] Fountain, J.; Petrich, M., Completely 0-simple semigroups of quotients, J Algebra, 101, 365-402 (1986) · Zbl 0589.20041 · doi:10.1016/0021-8693(86)90200-0
[7] Ganyushkin, O.; Mazorchuk, V., On Kiselman quotients of 0-Hecke monoids, Int. Electron. J. Algebra, 10, 174-191 (2011) · Zbl 1263.20053
[8] Krause, G.R., Lenagan, T.H.: Growth of Algebras and Gelfand-Kirillov Dimension Revised Ed., Amer. Math. Soc., Providence (2000) · Zbl 0957.16001
[9] Kudryavtseva, G.; Mazorchuk, V., On Kiselman’s semigroup. Yokohama, Math. J., 55, 21-46 (2009) · Zbl 1216.20044
[10] Mȩcel, A.; Okniński, J., Growth alternative for Hecke-Kiselman monoids, Publicacions Matemàtiques, 63, 219-240 (2019) · Zbl 1407.16020 · doi:10.5565/PUBLMAT6311907
[11] Mȩcel, A.; Okniński, J., Gröbner basis and the automaton property of Hecke-Kiselman algebras, Semigroup Forum, 99, 447-464 (2019) · Zbl 1423.16026 · doi:10.1007/s00233-019-10029-w
[12] Okniński, J.: Semigroup Algebras Monographs and Textbooks in Pure and Applied Mathematics, 138, Marcel Dekker, Inc., New York (1991)
[13] Okniński, J., Wiertel, M.: Combinatorics and structure of Hecke-Kiselman algebras, Communications in Contemporary Mathematics 22, 2050022 (2020) · Zbl 1462.16029
[14] Rowen, L.H.: Polynomial Identities in Ring Theory, Academic Press, New York (1980) · Zbl 0461.16001
[15] Rowen, L.H.: Ring Theory, 2, Academic Press, New York (1988) · Zbl 0651.16001
[16] Small, LW; Stafford, JT; Warfield, RB, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc., 97, 407-414 (1985) · Zbl 0561.16005 · doi:10.1017/S0305004100062976
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.