×

Global structure for a fourth-order boundary value problem with sign-changing weight. (English) Zbl 1483.34039

Summary: We study the fourth-order boundary value problem with a sign-changing weight function: \[ \begin{cases} u''''=\lambda m(t)u+f_1(t,u,u',u'',u''',\lambda)+f_2(t,u,u',u'',u''',\lambda),\quad t\in(0,1),\\ u(0)=u(1)=u''(0)=u''(1)=0, \end{cases} \] where \(\lambda\in\mathbb{R}\) is a parameter, \(f_1,f_2\in C([0, 1] \times\mathbb{R}^5,\mathbb{R}),f_1\) is not differentiable at the origin and infinity. Under some suitable conditions on nonlinear terms, we prove the existence of unbounded continua of positive and negative solutions of this problem which bifurcating from intervals of the line of trivial solutions or from infinity, respectively.

MSC:

34B09 Boundary eigenvalue problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] Aliyev, Z. S.—Huseynova, R. A.: Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight, Electron. J. Qual. Theory Differ. Equ. 92 (2017), pp. 12. · Zbl 1413.34144
[2] Berestycki, H.: On some nonlinear Sturm-Liouville problems, J. Differential Equations 26 (1977), 375-390. · Zbl 0331.34020
[3] Brown, K. J.—Lin, S. S.: On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl. 75 (1980), 112-120. · Zbl 0437.35058
[4] Cabada, A.—Cid, J.Á.—Sanchez, L.: Positivity and lower and upper solutions for fourth order boundary value problems, Nonlinear Anal. 67 (2007), 1599-1612. · Zbl 1125.34010
[5] Dai, G. Spectrum of Navier p-biharmonic problem with sign-changing weight, https://arxiv.org/abs/1207.7159v1.
[6] Dai, G.: Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable, Electron. J. Qual. Theory Differ. Equ. 65 (2013), 1-7. · Zbl 1340.34110
[7] Dai, G. W.—Han, X. L.—Ma, R. Y.: Global bifurcation and nodal solutions for fourth-order problems with sign-changing weight, Appl. Math. Comput. 17 (2013), 9399-9407. · Zbl 1294.34017
[8] Drábek, P.—Holubová, G.: On the maximum and antimaximum principles for the beam equation, Appl. Math. Lett. 56 (2016), 29-33. · Zbl 1375.34038
[9] Huseynova, R. A.: Global bifurcation from principal eigenvalues for nonlinear fourth order eigenvalue problem with indefinite weight, roc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 42 (2016), 202-211. · Zbl 1365.34039
[10] Han, X. L.—Gao, T: A priori bounds and existence of non-real eigenvalues of fourth-order boundary value problem with indefinite weight function, Electron. J. Differential Equations 82 (2016), 1-9. · Zbl 1351.34100
[11] Liu, Y.—O’Regan, D.: Bifurcation techniques for fourth order m-point boundary value problems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18 (2011), 215-234. · Zbl 1216.34018
[12] Rabinowitz, P. H.: Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513. · Zbl 0212.16504
[13] Rabinowitz, P. H.: Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math. 3 (1973), 161-202. · Zbl 0255.47069
[14] Rabinowitz, P. H.: On bifurcation from infinity, J. Differential Equations 14 (1973), 462-475. · Zbl 0272.35017
[15] Rynne, B. P.: Bifurcation from zero or infinity in Sturm-Liouville problems which are not linearizable, J. Math. Anal. Appl. 228 (1998), 141-156. · Zbl 0918.34028
[16] Yao, Q. L.: Existence, multiplicity and infinite solvability of positive solutions to a nonlinear fourth-order periodic boundary value problem, Nonlinear Anal. 63 (2005), 237-246. · Zbl 1082.34025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.