×

Rigidity, instability and dimensionality. (English) Zbl 1474.70010

Summary: The paper takes a detailed look at a surprising new aspect of the dynamics of rigid bodies. Far from the usual consideration of rigid body theory as a merely technical chapter of classical physics, I demonstrate here that there are solutions to the conservation equations of mechanics that imply the spontaneous, unpredictable splitting of a rigid body in free rotation, something that has direct implications for the problem of causality. The paper also shows that the instability revealed in indeterminist splitting processes does not depend solely on the bodies’ inertial properties but also on the number of dimensions of the physical space they inhabit. The paper concludes with a conjecture on the behavior of rigid bodies in four-dimensional space.

MSC:

70E15 Free motion of a rigid body
70E50 Stability problems in rigid body dynamics
Full Text: DOI

References:

[1] Aronson, J. (1971a). The legacy of Hume’s analysis of causation. Studies in History and Philosophy of Science, 2, 135-156. · doi:10.1016/0039-3681(71)90028-8
[2] Aronson, J. (1971b). On the grammar of “Cause”. Synthese, 22, 414-430. · doi:10.1007/BF00413436
[3] Arnowitt, R., Deser, S., & Mismer, C. W. (1960). Finite self-energy of classical point particles. Physical Review Letters, 4, 375-377. · doi:10.1103/PhysRevLett.4.375
[4] Bigelow, J., Ellis, B., & Pargetter, R. (1988). Forces. Philosophy of Science, 55, 614-630. · doi:10.1086/289464
[5] Dowe, Ph. (2000). Physical causation. Cambridge: Cambridge University Press. · doi:10.1017/CBO9780511570650
[6] Fair, D. (1979). Causation and the flow of energy. Erkenntnis, 14, 219-250. · doi:10.1007/BF00174894
[7] Fedorov, Y. N., & Kozlov, V. V. (1995). Various aspects of n-dimensional rigid body dynamics. Translations of the American Mathematical Society Translations—Series, 2(168), 141-172.
[8] French, S., & Krause, D. (2006). Identity in physics: A historical, philosophical, and formal analysis. Oxford: Oxford University Press. · doi:10.1093/0199278245.001.0001
[9] Heathcote, A. (1989). A Theory of causality: Causality = interaction (as defined by a suitable quantum field theory). Erkenntnis, 31, 77-108. · doi:10.1007/BF01239130
[10] Leyvraz, F. (2015). Understanding rigid body motion in arbitrary dimensions. European Journal of Physics, 36, 035021. · Zbl 1367.70004 · doi:10.1088/0143-0807/36/3/035021
[11] Marghitu, D. B., & Dupac, M. (2012). Advanced dynamics. New York: Springer. · Zbl 1292.70001 · doi:10.1007/978-1-4614-3475-7
[12] Ratiu, T. S. (1980). The motion of the free n-dimensional rigid body. Indiana University Mathematical Journal, 29, 609-629. · Zbl 0432.70011 · doi:10.1512/iumj.1980.29.29046
[13] Verelst, K. (2014). Newton versus Leibniz: intransparency versus inconsistency. Synthese, 191, 2907-2940. · doi:10.1007/s11229-014-0465-7
[14] Zwiebach, B. (2004). A first course in string theory. Cambridge: Cambridge University Press. · Zbl 1072.81001 · doi:10.1017/CBO9780511841682
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.