×

Further results for a subclass of univalent functions related with differential inequality. (English) Zbl 1473.30009

Summary: Let \(\Omega\) denote the class of functions \(f\) analytic in the open unit disc \(\Delta\), normalized by the condition \(f(0)=f'(0)-1=0\) and satisfying the inequality \[ \left| zf'(z)-f(z)\right| <\frac{1}{2}\quad (z\in \Delta). \] The class \(\Omega\) was introduced recently by Z. Peng and G. Zhong [Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 1, 69–78 (2017; Zbl 1389.30072)]. Also let \(\mathcal{U}\) denote the class of functions \(f\) analytic and normalized in \(\Delta\) and satisfying the condition \[ \bigg| \left( \frac{z}{f(z)}\right)^2f'(z)-1\bigg| <1\quad (z\in \Delta ). \] In this article, we obtain some further results for the class \(\Omega\) including, an extremal function and more examples of \(\Omega\), inclusion relation between \(\Omega\) and \(\mathcal{U}\), the radius of starlikeness, convexity and close-to-convexity and sufficient condition for function \(f\) to be in \(\Omega\). Furthermore, along with the settlement of the coefficient problem and the Fekete-Szegö problem for the elements of \(\Omega\), the Toeplitz matrices for \(\Omega\) are also discussed in this article.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)

Citations:

Zbl 1389.30072

References:

[1] Aksentiev, LA, Sufficient conditions for univalence of regular functions, Izv. Vyssh. Uchebn. Zaved. Mat., 3, 3-7 (1958) · Zbl 0126.09004
[2] Ali, RM; Lee, SK; Ravichandran, V.; Supramanian, S., The Fekete-Szegö coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc., 35, 119-142 (2009) · Zbl 1193.30006
[3] Duren, PL, Univalent Functions (1983), New York: Springer-Verlag, New York · Zbl 0514.30001
[4] Fournier, R.; Ponnusamy, S., A class of locally univalent functions defined by a differential inequality, Complex Var. Elliptic Equ., 52, 1-8 (2007) · Zbl 1110.30008 · doi:10.1080/17476930600780149
[5] Kargar, R.; Ebadian, A.; Sokół, J., On Booth lemiscate and starlike functions, Anal. Math. Phys., 9, 143-154 (2019) · Zbl 1415.30011 · doi:10.1007/s13324-017-0187-3
[6] Kargar, R.; Ebadian, A.; Sokół, J., On subordination of some analytic functions, Sib. Math. J., 57, 599-604 (2016) · Zbl 1353.30012 · doi:10.1134/S0037446616040042
[7] Keogh, FR; Merkes, EP, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20, 8-12 (1969) · Zbl 0165.09102 · doi:10.1090/S0002-9939-1969-0232926-9
[8] Miller, SS; Mocanu, PT, Differential Subordinations, Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics (2000), New York/Basel: Marcel Dekker Inc., New York/Basel · Zbl 0954.34003
[9] Obradović, M.; Peng, Z., Some new results for certain classes of univalent functions, Bull. Malays. Math. Sci. Soc., 41, 1623-1628 (2018) · Zbl 1393.30017 · doi:10.1007/s40840-017-0546-0
[10] Obradović, M.; Ponnusamy, S., New criteria and distortion theorems for univalent functions, Compl. Var. Theory Appl., 44, 173-191 (2001) · Zbl 1023.30015
[11] Obradović, M.; Ponnusamy, S., On a class of univalent functions, Appl. Math. Lett., 25, 1373-1378 (2012) · Zbl 1251.30023 · doi:10.1016/j.aml.2011.12.005
[12] Obradović, M.; Ponnusamy, S., Product of univalent functions, Math. Comput. Model., 57, 793-799 (2013) · Zbl 1305.30010 · doi:10.1016/j.mcm.2012.09.004
[13] Obradović, M.; Ponnusamy, Radius of univalence of certain combination of univalent and analytic functions, Bull. Malays. Math. Sci. Soc., 35, 325-334 (2012) · Zbl 1246.30028
[14] Obradović, M.; Ponnusamy, S., Univalence and starlikeness of certain transforms defined by convolution, J. Math. Anal. Appl., 336, 758-767 (2007) · Zbl 1123.30006 · doi:10.1016/j.jmaa.2007.03.020
[15] Ozaki, S.; Nunokawa, M., The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc., 33, 392-394 (1972) · Zbl 0233.30011 · doi:10.1090/S0002-9939-1972-0299773-3
[16] Peng, Z.; Zhong, G., Some properties for certain classes of univalent functions defined by differential inequalities, Acta. Math. Sci., 37B, 69-78 (2017) · Zbl 1389.30072 · doi:10.1016/S0252-9602(16)30116-3
[17] Robertson, MS, On the theory of univalent functions, Ann. Math., 37, 374-408 (1936) · JFM 62.0373.05 · doi:10.2307/1968451
[18] Rogosinski, W., On the coefficients of subordinate functions, Proc. London. Math. Soc., 2, 48-82 (1945) · Zbl 0028.35502 · doi:10.1112/plms/s2-48.1.48
[19] Srivastava, HM; Răducanu, D.; Zaprawa, P., A certain subclass of analytic functions defined by means of differentiona subordination, Filomat, 30, 3743-3757 (2016) · Zbl 1458.30038 · doi:10.2298/FIL1614743S
[20] Ye, K.; Lek-Heng, L., Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16, 577-598 (2016) · Zbl 1342.15024 · doi:10.1007/s10208-015-9254-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.