×

On some supercongruence conjectures for truncated hypergeometric series. (English) Zbl 1482.11003

The authors determine many truncated hypergeometric series connected to the values of \(p\)-adic gamma function \(\Gamma_p (x)\), some of which confirming the Ramanujan-type supercongruences conjectured by L. van Hamme [Lect. Notes Pure Appl. Math. 192, 223–236 (1997; Zbl 0895.11051)] and investigated by H. Swisher [Res. Math. Sci. 2, Paper No. 18, 21 p. (2015; Zbl 1337.33005)].
Among the noteworthy results, the supercongruence hypothesized by J.-C. Liu [J. Math. Anal. Appl. 471, No. 1–2, 613–622 (2019; Zbl 1423.11015)] \[\sum_{k=0}^{\frac{p-1}{2}} (4k+1) (-1)^k \frac{\bigl (\frac{1}{2}\big )_{k}^{5}}{k!^5} \equiv -\frac{p^3}{16} \Gamma_p \Bigl (\frac{1}{4}\Big )^4 \pmod{p^5}\]is here established for any prime \(p \geq 5\) such that \(p \equiv 3 \pmod{4}\), whereas, on the basis of “numerical evidence”, \[\sum_{k=0}^{\frac{p^r-1}{2}} (4k+1) (-1)^k \frac{\bigl (\frac{1}{2}\big )_{k}^{5}}{k!^5} \equiv p^{2r} \pmod{p^{r+4}}\] is proposed as conjecture for positive even integers \(r\) and primes \(p>5\) with \(p \equiv 3 \pmod{4}\).
This paper also provides an alternative to the proof of V. J. W. Guo and S.-D. Wang [Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 3, 1127–1138 (2020; Zbl 1468.11067)] for the van Hamme type supercongruence \[\sum_{k=0}^{\frac{p^r-1}{2}} (4k+1) \frac{\bigl (\frac{1}{2}\big )^4}{k!^4} \equiv p^{r} \pmod{p^{r+3}},\] valid for any prime \(p>3\) and any integer \(r>1\).
Beyond a proving method and a \(p\)-adic approximation to \(\Gamma_p\)-quotients both due to L. Long and R. Ramakrishna [Adv. Math. 290, 773–808 (2016; Zbl 1336.33018)], the authors employ a congruence about rising factorials they found in a previous work [Integral Transforms Spec. Funct. 30, No. 9, 683–692 (2019; Zbl 1439.11012)].

MSC:

11A07 Congruences; primitive roots; residue systems
11B65 Binomial coefficients; factorials; \(q\)-identities
33B15 Gamma, beta and polygamma functions
33C20 Generalized hypergeometric series, \({}_pF_q\)

Software:

SIGMA
Full Text: DOI

References:

[1] G. Andrews, R. Askey, and R. Roy, Special functions, vol. 71, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge 1999. · Zbl 0920.33001
[2] H. Cohen, Number Theory Vol. II. Analytic and Modern Tools, Graduate Text in Mathematics 240, Springer, New York 2007. · Zbl 1119.11002
[3] Guo, VJW, Some generalizations of a supercongruence of Van Hamme, Integral Transforms Spec. Funct., 28, 12, 888-899 (2017) · Zbl 1379.33013 · doi:10.1080/10652469.2017.1381843
[4] V. J. W. Guo and S.-D. Wang, Some congruences involving fourth powers of central \(q\)-binomial coefficients, preprint. · Zbl 1468.11067
[5] A. Jana and G. Kalita, Supercongruences for sums involving rising factorial \(\left(\frac{1}{\ell }\right)_k^3\), Integral Transforms Spec. Funct. 30 (2019), no. 9, 683-692. · Zbl 1439.11012
[6] J.-C. Liu, On Van Hamme’s (A.2) and (H.2) supercongruences, J. Math. Anal. Appl. 471 (2019), no. 1-2, 613-622. · Zbl 1423.11015
[7] Long, L.; Ramakrishna, R., Some supercongruences occuring in truncated hypergeometric series, Adv. Math., 290, 773-808 (2016) · Zbl 1336.33018 · doi:10.1016/j.aim.2015.11.043
[8] Long, L., Hypergeometric evaluation identities and supercongruences, Pacific J. Math., 249, 2, 405-418 (2011) · Zbl 1215.33002 · doi:10.2140/pjm.2011.249.405
[9] E. Mortenson, A \(p\)-adic supercongruence conjecture of Van Hamme, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4321-4328. · Zbl 1171.11061
[10] D. McCrthy and R. Osburn, A \(p\)-adic analogue of a formula of Ramanujan, Arch. Math. (Basel) 91 (2008), no. 6, 492-504. · Zbl 1175.33004
[11] M. Petkov \({\hat{s}}\) ek, H. S. Wilf, and D. Zeilberger, \(A =B\), A. K. Peters, Ltd., Wellesley, MA, (1996). With a foreward by D. E. Knuth, With a separately available computer disk. · Zbl 0848.05002
[12] S. Ramanujan, Modular equations and approximations to \(\pi \), Quart. J. Math. 45 (1914), 350-372. In Collected papers of Srinivasa Ramanujan, pages 23-39. AMS Chelsea Publ., Providence, RI, 2000. · JFM 45.1249.01
[13] C. Schneider, Symbolic summation assists combinatorics, Sém. Lothar. Combin. 56 (2007), B56b, 36 pp. · Zbl 1188.05001
[14] Selberg, A.; Chowla, S., On Epstein’s zeta-function, J. Reine Angew. Math., 227, 86-110 (1967) · Zbl 0166.05204
[15] Slater, LJ, Generalized hypergeometric functions (1966), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0135.28101
[16] H. Swisher, On the supercongruence conjectures of Van Hamme, Res. Math. Sci. 2 (2015), Art. 2, 18 pp. · Zbl 1337.33005
[17] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, \(p\)-adic functional analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192 (1997), 223-236. · Zbl 0895.11051
[18] Zudilin, W., Ramanujan-type supercongruences, J. Number Theory, 129, 8, 1848-1857 (2009) · Zbl 1231.11147 · doi:10.1016/j.jnt.2009.01.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.