×

Quantum simulation of generalized Hardy’s paradox and corresponding Hardy’s inequality via quantum programming. (English) Zbl 1528.81088

Summary: Hardy’s paradox can demonstrate the conflict between quantum mechanics and local realism. Experimental testing of Hardy’s paradox has been carried out, but it involved only a few qubits. We propose a simple but novel approach to verify the generalized Hardy’s paradox and Hardy’s inequality using quantum programming. By designing scalable quantum circuits, we write quantum programs in Q# and corresponding classical controls in C# using Visual Studio. Our quantum simulation results are consistent with the original theoretical values; moreover, they can be easily extended to multiqubit systems. This provides an effective means for investigating multipartite entanglement question using quantum programming.

MSC:

81P68 Quantum computation
Full Text: DOI

References:

[1] Bell, JS, Physics (long island city N.Y.), 1, 195 (1964)
[2] Svetlichny, G., Phys. Rev. D, 35, 3066 (1987) · doi:10.1103/PhysRevD.35.3066
[3] Mermin, ND, Phys. Rev. Lett., 65, 1838 (1990) · Zbl 0971.81507 · doi:10.1103/PhysRevLett.65.1838
[4] Werner, RF; Wolf, MM, Phys. Rev. A, 64, 032112 (2001) · doi:10.1103/PhysRevA.64.032112
[5] Zukowski, M.; Brukner, C., Phys. Rev. Lett., 88, 210401 (2002) · Zbl 1246.81020 · doi:10.1103/PhysRevLett.88.210401
[6] Li, M.; Fei, SM, Phys. Rev. A, 86, 052119 (2012) · doi:10.1103/PhysRevA.86.052119
[7] Wu, YC; Zukowski, M.; Chen, JL, Phys. Rev. A, 88, 022126 (2013) · doi:10.1103/PhysRevA.88.022126
[8] He, YQ; Ding, D.; Yan, FL, Europhys. Lett., 111, 40001 (2015) · doi:10.1209/0295-5075/111/40001
[9] Hardy, L., Phys. Rev. Lett., 68, 2981 (1992) · Zbl 0969.81500 · doi:10.1103/PhysRevLett.68.2981
[10] Einstein, A.; Podolsky, B.; Rosen, N., Phys. Rev., 47, 777 (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[11] Hardy, L., Phys. Rev. Lett., 71, 1665 (1993) · Zbl 0972.81522 · doi:10.1103/PhysRevLett.71.1665
[12] Gisin, N., Phys. Lett. A, 154, 5-6 (1991) · doi:10.1016/0375-9601(91)90805-I
[13] Gisin, N.; Peres, A., Phys. Lett. A, 162, 15-17 (1992) · doi:10.1016/0375-9601(92)90949-M
[14] Chen, JL; Wu, CF; Kwek, LC, Phys. Rev. Lett., 93, 140407 (2004) · doi:10.1103/PhysRevLett.93.140407
[15] Zukowski, M.; Brukner, C.; Laskowski, W., Phys. Rev. Lett., 88, 210402 (2002) · Zbl 1246.81021 · doi:10.1103/PhysRevLett.88.210402
[16] Ding, D.; He, YQ; Yan, FL, J. Phys. A: Math. Theor., 53, 265301 (2020) · Zbl 1519.81025 · doi:10.1088/1751-8121/ab8ef4
[17] Cereceda, JL, Phys. Lett. A, 327, 433-437 (2004) · Zbl 1138.81329 · doi:10.1016/j.physleta.2004.06.004
[18] Zohren, S.; Gill, RD, Phys. Rev. Lett., 100, 120406 (2008) · doi:10.1103/PhysRevLett.100.120406
[19] Choudhary, SK; Ghosh, S.; Kar, G., Phys. Rev. A, 81, 042107 (2010) · doi:10.1103/PhysRevA.81.042107
[20] Yu, SX; Chen, Q.; Zhang, CJ, Phys. Rev. Lett., 109, 120402 (2012) · doi:10.1103/PhysRevLett.109.120402
[21] Chen, JL; Cabello, A.; Xu, ZP, Phys. Rev. A, 88, 062116 (2013) · doi:10.1103/PhysRevA.88.062116
[22] Chen, Q.; Yu, SX; Zhang, CJ, Phys. Rev. Lett., 112, 140404 (2014) · doi:10.1103/PhysRevLett.112.140404
[23] Wang, XX; Zhang, CJ; Chen, QS, Phys. Rev. A, 94, 022110 (2016) · doi:10.1103/PhysRevA.94.022110
[24] Boschi, D.; Branca, S.; De Martini, F., Phys. Rev. Lett., 79, 2755 (1997) · Zbl 0947.81501 · doi:10.1103/PhysRevLett.79.2755
[25] Lundeen, JS; Steinberg, AM, Phys. Rev. Lett., 106, 200402 (2011) · doi:10.1103/PhysRevLett.106.200402
[26] Karimi, E.; Cardano, F.; Maffei, M., Phys. Rev. A, 89, 032122 (2014) · doi:10.1103/PhysRevA.89.032122
[27] Jiang, SH; Xu, ZP; Su, HY, Phys. Rev. Lett., 120, 050403 (2018) · doi:10.1103/PhysRevLett.120.050403
[28] Luo, YH; Su, HY; Huang, HL, Sci. Bull., 63, 1611-1615 (2018) · doi:10.1016/j.scib.2018.11.025
[29] Knill, E.: Technical Report LAUR-96-2724 (Los Alamos National Laboratory) (1996)
[30] Green, A., Lumsdaine, P., Ross, N., et al.: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI) 333 (2013)
[31] Javadiabhari, A., Patil, S., Kudrow, D., et al.: arXiv:1507.01902 (2015)
[32] Wecker, D., Svore, K.M.: arXiv:1402.4467 (2014)
[33] Svore, K., Geller, A., Troyer, M., et al: .. In: Proceedings of the Real World Domain Specific Languages Workshop (New York, NY, USA: ACM) 7, 1-10 (2018)
[34] Gao, HK; Wang, CH; Wan, LP, Int. J. Theor. Phys., 59, 2486-2493 (2020) · Zbl 1447.81036 · doi:10.1007/s10773-020-04516-y
[35] Caspani, L.; Xiong, CL; Eggleton, BJ, Light-Sci. Appl., 6, 17100 (2017) · doi:10.1038/lsa.2017.100
[36] Sibson, P.; Erven, C.; Godfrey, M., Nature Photon., 8, 13984 (2017)
[37] Raffaelli, F.; Ferranti, G.; Mahler, DH, Quantum Sci. Technol., 3, 025003 (2018) · doi:10.1088/2058-9565/aaa38f
[38] Mukhopadhyay, A.; Sen, B.; Thapliyal, K., Quantum Inf. Process., 18, 234 (2019) · doi:10.1007/s11128-019-2344-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.