×

Multi-mesh-scale approximation of thin geophysical mass flows on complex topographies. (English) Zbl 1528.65060

Summary: This paper is devoted to a multi-mesh-scale approach for describing the dynamic behaviors of thin geophysical mass flows on complex topographies. Because the topographic surfaces are generally non-trivially curved, we introduce an appropriate local coordinate system for describing the flow behaviors in an efficient way. The complex surfaces are supposed to be composed of a finite number of triangle elements. Due to the unequal orientation of the triangular elements, the distinct flux directions add to the complexity of solving the Riemann problems at the boundaries of the triangular elements. Hence, a vertex-centered cell system is introduced for computing the evolution of the physical quantities, where the cell boundaries lie within the triangles and the conventional Riemann solvers can be applied. Consequently, there are two mesh scales: the element scale for the local topographic mapping and the vertex-centered cell scale for the evolution of the physical quantities. The final scheme is completed by employing the HLL-approach for computing the numerical flux at the interfaces. Three numerical examples and one application to a large-scale landslide are conducted to examine the performance of the proposed approach as well as to illustrate its capability in describing the shallow flows on complex topographies.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
76D05 Navier-Stokes equations for incompressible viscous fluids
76M12 Finite volume methods applied to problems in fluid mechanics
58J90 Applications of PDEs on manifolds
86-08 Computational methods for problems pertaining to geophysics
35Q35 PDEs in connection with fluid mechanics
35Q86 PDEs in connection with geophysics

Software:

r.avaflow; SWASHES
Full Text: DOI

References:

[1] S. B. Savage, K. Hutter, The motion of a finite mass of granular material down a rough incline, J. Fluid Mech. 199 (1989) 177-215. · Zbl 0659.76044
[2] M. Christen, J. Kowalski, and P. Bartelt, RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1-2) (2010) 1-14.
[3] R. P. Denlinger, R. M. Iverson, Granular avalanches across irregular three-dimensional ter-rain: 1. Theory and computation, Journal of Geophysical Research: Earth Surface 109 (F1) (2004) F01014.
[4] S. Li and C. J. Duffy, Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers, Water Resources Research, 47 (2011) W03508.
[5] Y.-S. Kuo, Y.-J. Tsai, Y.-S. Chen, C.-L. Shieh, K. Miyamoto, and T. Itoh, Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot, Landslides, 10(2) (2013) 191-202.
[6] T. Takahashi, Debris flow: mechanics, prediction and countermeasures, CRC press, 2014.
[7] K. B. Khattri and S. P. Pudasaini, An extended quasi two-phase mass flow model, Interna-tional Journal of Non-Linear Mechanics, 106 (2018), pp. 205-222.
[8] I. Luca, C.-Y. Kuo, K. Hutter, Y.-C. Tai, Modeling shallow over-saturated mixtures on arbi-trary rigid topography, Journal of Mechanics, 28(3) (2012) 523-541.
[9] E. B. Pitman and L. Le, A two-fluid model for avalanche and debris flows, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363 (2005), pp. 1573-1601. · Zbl 1152.86302
[10] S. P. Pudasaini, A general two-phase debris flow model, Journal of Geophysical Research: Earth Surface, 117 (2012) F03010.
[11] S. P. Pudasaini and J.-T. Fischer, A mechanical model for phase-separation in debris flow, International Journal of Multiphase Flow, (2020), p. 103292.
[12] S. P. Pudasaini and M. Mergili, A multi-phase mass flow model. Journal of Geophysical Research: Earth Surface, 124 (2019) 2920-2942.
[13] M. Mergili, F. Jan-Thomas, J. Krenn, and S. P. Pudasaini, r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development 10 (2017) p. 553.
[14] M. Mergili, A. Emmer, A. Juřicová, A. Cochachin, J.-T. Fischer, C. Huggel, and S. P. Pu-dasaini. How well can we simulate complex hydro-geomorphic process chains? the 2012 multi-lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Perú). Earth Surface Processes and Landforms, 43(7) (2018) 1373-1389.
[15] M. Mergili, M. Jaboyedoff, J. Pullarello, and S. P. Pudasaini. Back calculation of the 2017 Piz Cengalo-Bondo landslide cascade with r.avaflow: what we can do and what we can learn. Natural Hazards and Earth System Sciences, 20(2) (2020) 505-520.
[16] S. Savage, K. Hutter, The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis, Acta Mechanica 86 (1-4) (1991) 201-223. · Zbl 0732.73053
[17] R. Greve, T. Koch, K. Hutter, Unconfined flow of granular avalanches along a partly curved surface. I. Theory, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 445 (1924) (1994) 399-413. · Zbl 0807.76006
[18] J. Gray, M. Wieland, K. Hutter, Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc. Lond. A 455 (1999) 1841-1875. · Zbl 0951.76091
[19] J. M. N. T. Gray, Y.-C. Tai, S. Noelle, Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, Journal of Fluid Mechanics 491 (2003) 161-181. · Zbl 1063.76655
[20] X. Meng, Y. Wang, Modelling and numerical simulation of two-phase debris flows, Acta Geotechnica 11 (5) (2016) 1027-1045.
[21] S. P. Pudasaini, K. Hutter, Rapid shear flows of dry granular masses down curved and twisted channels, Journal of Fluid Mechanics 495 (2003) 193-208. · Zbl 1054.76083
[22] S. P. Pudasaini, Y. Wang, and K. Hutter, Modelling debris flows down general channels. Natural Hazards and Earth System Sciences, 5 (2005) 799-819.
[23] S. P. Pudasaini, Y. Wang, L.-T. Sheng, S.-S. Hsiau, K. Hutter, and R. Katzenbach, Avalanching granular flows down curved and twisted channels: Theoretical and experimental results, Physics of Fluids 20 (2008), p. 073302. · Zbl 1182.76614
[24] F. Bouchut, M. Westdickenberg, Gravity driven shallow water models for arbitrary topogra-phy, Comm. Math. Sci 2 (2004) 359-389. · Zbl 1084.76012
[25] C.-Y. Kuo, Y.-C. Tai, F. Bouchut, A. Mangeney, M. Pelanti, R. Chen, K. Chang, Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography, Engineering Geology 104 (3-4) (2009) 181-189.
[26] I. Luca, Y.-C. Tai, and C.-Y. Kuo. Non-cartesian, topography-based avalanche equations and approximations of gravity driven flows of ideal and viscous fluids. Mathematical Models and Methods in Applied Sciences, 19 (01) (2009) 127-171. · Zbl 1156.76008
[27] I. Luca, Y.-C. Tai, and C.-Y. Kuo, Modeling shallow gravity-driven solid-fluid mixtures over arbitrary topography, Communications in Mathematical Sciences 7 (2009) 1-36. · Zbl 1269.76096
[28] W. Hui, P. Li, Z. Li, A unified coordinate system for solving the two-dimensional Euler equations, Journal of Computational Physics 153 (2) (1999) 596-637. · Zbl 0969.76061
[29] W. H. Hui, The unified coordinate system in computational fluid dynamics, Communica-tions in Computational Physics 2 (4) (2007) 577-610.
[30] Y.-C. Tai, C.-Y. Kuo, A new model of granular flows over general topography with erosion and deposition, Acta Mechanica 199 (2008) 71-96. · Zbl 1148.76058
[31] Y.-C. Tai, Y.-C. Lin, A focused view of the behavior of granular flows down a confined in-clined chute into horizontal run-out zone, Phys. Fluids 20 (2008) 123302. · Zbl 1182.76741
[32] I. Luca, Y.-C. Tai, C.-Y. Kuo, Shallow geophysical mass flows down arbitrary topography, Springer, 2016.
[33] Y.-C. Tai, C.-Y. Kuo, Modelling shallow debris flows of the Coulomb-mixture type over tem-porally varying topography, Natural Hazards and Earth System Sciences 12 (2) (2012) 269-280.
[34] Y.-C. Tai, C.-Y. Kuo, W.-H. Hui, An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature, Geophysical & As-trophysical Fluid Dynamics 106 (6) (2012) 596-629. · Zbl 1532.76121
[35] C.-Y. Kuo, Y.-C. Tai, C. Chen, K. Chang, A. Siau, J. Dong, R. Han, T. Shimamoto, C. Lee, The landslide stage of the Hsiaolin catastrophe: Simulation and validation, Journal of Geophys-ical Research: Earth Surface 116 (F04007) (2011) doi:10.1029/ 2010JF001921.
[36] Y.-C. Tai, J. Heß, Y. Wang, Modeling two-phase debris flows with grain-fluid separation over rugged topography: Application to the 2009 Hsiaolin event, Taiwan, Journal of Geophysical Research: Earth Surface 124 (2) (2019) 305-333.
[37] R. M. Iverson, Regulation of landslide motion by dilatancy and pore pressure feedback, Journal of Geophysical Research: Earth Surface 110 (2005) F02015.
[38] J. Heß, Y. Wang, K. Hutter, Thermodynamically consistent modeling of granular-fluid mix-tures incorporating pore pressure evolution and hypoplastic behavior, Continuum Mechan-ics and Thermodynamics 29 (1) (2017) 311-343. · Zbl 1365.76327
[39] J. Heß, Y.-C. Tai, Y. Wang, Debris flows with pore pressure and intergranular friction on rugged topography, Computers & Fluids 190 (2019) 139-155. · Zbl 1496.76150
[40] B. Braconnier, J.-J. Hu, Y.-Y. Niu, B. Nkonga, K.-M. Shyue, Numerical simulations of low Mach compressible two-phase flows: Preliminary assessment of some basic solution tech-niques., ESAIM: Proc. 28 (2009) 117-134. · Zbl 1176.76092
[41] C.-Y. Kuo, B. Nkonga, M. Ricchiuto, Y.-C. Tai, B. Braconnier, Dry granular flows with ero-sion/deposition process., ESAIM: Proc. 28 (2009) 135-149. · Zbl 1176.76137
[42] M. Rauter,Ž. Tuković, A finite area scheme for shallow granular flows on three-dimensional surfaces., Computers & Fluids 166 (2018) 184-199. · Zbl 1390.76904
[43] C. Juez, D. Caviedes-Voullième, J. Murillo, P. García-Navarro, 2D dry granular free-surface transient flow over complex topography with obstacles. Part II: Numerical predictions of fluid structures and benchmarking, Computers & Geosciences 73 (0) (2014) 142-163.
[44] I. Luca, K. Hutter, Y.-C. Tai, and C.-Y. Kuo, A hierarchy of avalanche models on arbitrary topography. Acta Mechanica 205 (2009) 121-149. · Zbl 1167.74031
[45] M. Quecedo, M. Pastor, Finite element modelling of free surface flows on inclined and curved beds, Journal of Computational Physics 189 (1) (2003) 45-62. · Zbl 1097.76572
[46] J.-T. Fischer, J. Kowalski, S. P. Pudasaini, Topographic curvature effects in applied avalanche modeling, Cold Regions Science and Technology 74 (2012) 21-30.
[47] E. Audusse, M. Bristeau, A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes, Journal of Computational Physics 206 (1) (2005) 311-333. · Zbl 1087.76072
[48] G. Richard, S. Gavrilyuk, A new model of roll waves: comparison with Brock’s experiments, Journal of Fluid Mechanics 698 (2012) 374-405. · Zbl 1250.76041
[49] G. Richard, S. Gavrilyuk, The classical hydraulic jump in a model of shear shallow-water flows, Journal of Fluid Mechanics (2013) 492-521. · Zbl 1287.76089
[50] A. Bhole, B. Nkonga, S. Gavrilyuk, K. Ivanova, Fluctuation splitting Riemann solver for a non-conservative modeling of shear shallow water flow, Journal of Computational Physics 392 (2019) 205-226. · Zbl 1452.65185
[51] P. Chandrashekar, B. Nkonga, A. K. Meena, and A. Bhole, A path conservative finite vol-ume method for a shear shallow water model, Journal of Computational Physics, (2020), p. 109457. · Zbl 1436.76036
[52] O. Pouliquen, Y. Forterre, Friction law for dense granular flows: Application to the motion of mass down a rough inclined plane., J. Fluid Mech. 453 (2002) 133-151. · Zbl 0987.76522
[53] G. Midi, On dense granular flows., Eur. Phys. J. E 14.
[54] E. Audusse, F. Bouchut, M. Bristeau, R. Klein, B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput. 25 (2004) 2050-2065. · Zbl 1133.65308
[55] G. Taubin, Estimating the tensor of curvature of a surface from a polyhedral approximation, Proceedings, Fifth International Conference on Computer Vision (1995) 902-907.
[56] J. J. Stoker, Water waves: The mathematical theory with applications, Vol. IV of Pure and applied mathematics, Interscience Publishers, Inc., New York, 1957. · Zbl 0078.40805
[57] O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T.-N. Vo, F. James, S. Cordier, et al., Swashes: a compilation of shallow water analytic solutions for hydraulic and environ-mental studies, International Journal for Numerical Methods in Fluids 72 (3) (2013) 269-300. · Zbl 1455.76005
[58] S. B. Savage, K. Hutter, The motion of a finite mass of granular material down a rough incline, Journal of fluid mechanics 199 (1989) 177-215. · Zbl 0659.76044
[59] Y.-C. Tai, S. Noelle, J. Gray, K. Hutter, Shock-capturing and front-tracking methods for gran-ular avalanches, Journal of Computational Physics 175 (1) (2002) 269-301. · Zbl 1168.76356
[60] Y. Kuo, Y. Tsai, Y. Chen, C. Shieh, K. Miyamoto, T. Itoh, Movement of deep-seated rainfall-induced landslide at Shiaolin Village during typhoon Morakot, Landslides 10 (2) (2013) 191-202.
[61] J. Dong, Y. Li, C. Kuo, R. Sung, M. Li, C. Lee, C. Chen, W. Lee, The formation and breach of a short-lived landslide dam at Hsiaolin village, Taiwan part I: post-event reconstruction of dam geometry, Engineering Geology 123 (1) (2011) 40-59.
[62] A. E. Scheidegger, On the prediction of the reach and velocity of catastrophic landslides, Rock mechanics, 5 (1973), pp. 231-236.
[63] O. Castro-Orgaz, K. Hutter, J. V. Giraldez, W. H. Hager, Nonhydrostatic granular flow over 3-d terrain: New Boussinesq-type gravity waves?, Journal of Geophysical Research: Earth Surface 120 (1) (2015) 1-28.
[64] R. Kaitna, W. Dietrich, L. Hsu, Surface slopes, velocity profiles and fluid pressure in coarse-grained debris flows saturated with water and mud, Journal of Fluid Mechanics 741 (2014) 377-403.
[65] P.-Y. Lagrée, G. Saingier, S. Deboeuf, L. Staron, S. Popinet, Granular front for flow down a rough incline: about the value of the shape factor in depths averaged models, in: EPJ Web of Conferences, Vol. 140, EDP Sciences, 2017, p. 03046.
[66] R. Kaitna, M. C. Palucis, B. Yohannes, K. M. Hill, W. E. Dietrich, Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experi-mental debris flows, Journal of Geophysical Research: Earth Surface 121 (2) (2016) 415-441.
[67] F. Bouchut, E. D. Fernández-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase two-layer model for fluidized granular flows with dilatancy effects, Journal of Fluid Mechanics 801 (2016) 166-221. · Zbl 1445.76087
[68] F. Bouchut, E. D. Fernández-Nieto, E. Koné, A. Mangeney, G. Narbona-Reina, A two-phase solid-fluid model for dense granular flows including dilatancy effects: comparison with sub-marine granular collapse experiments, in: EPJ Web of Conferences, Vol. 140, EDP Sciences, 2017, p. 09039.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.