×

Localized exponential time differencing method for shallow water equations: algorithms and numerical study. (English) Zbl 1473.65141

Summary: In this paper, we investigate the performance of the exponential time differencing (ETD) method applied to the rotating shallow water equations. Comparing with explicit time stepping of the same order accuracy in time, the ETD algorithms could reduce the computational time in many cases by allowing the use of large time step sizes while still maintaining numerical stability. To accelerate the ETD simulations, we propose a localized approach that synthesizes the ETD method and overlapping domain decomposition. By dividing the original problem into many subdomain problems of smaller sizes and solving them locally, the proposed approach could speed up the calculation of matrix exponential vector products. Several standard test cases for shallow water equations of one or multiple layers are considered. The results show great potential of the localized ETD method for high-performance computing because each subdomain problem can be naturally solved in parallel at every time step.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
76U05 General theory of rotating fluids
Full Text: DOI

References:

[1] M. Hochbruck, C. Lubich, H. Selhofer, Exponential integrators for large systems of differen-tial equations, SIAM Journal on Scientific Computing 19 (5) (1998) 1552-1574. · Zbl 0912.65058
[2] S. Cox, P. Matthews, Exponential time differencing for stiff systems, Journal of Computa-tional Physics 176 (2) (2002) 430-455. · Zbl 1005.65069
[3] Q. Du, W. Zhu, Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT Numerical Mathematics 45 (2) (2005) 307-328. · Zbl 1080.65074
[4] S. Krogstad, Generalized integrating factor methods for stiff PDEs, Journal of Computa-tional Physics 203 (1) (2005) 72-88. · Zbl 1063.65097
[5] M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods, Journal of Computational Physics 213 (2) (2006) 748-776. · Zbl 1089.65063
[6] M. Hochbruck, A. Ostermann, J. Schweitzer, Exponential Rosenbrock-type methods, SIAM Journal on Numerical Analysis 47 (1) (2009) 786-803. · Zbl 1193.65119
[7] L. Ju, J. Zhang, L. Zhu, Q. Du, Fast explicit integration factor methods for semilinear parabolic equations, Journal of Scientific Computing 62 (2015) 431-455. · Zbl 1317.65172
[8] L. Ju, J. Zhang, Q. Du, Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations, Computational Materials Science 108 (2015) 272-282.
[9] M. Hochbruck, A. Ostermann, Exponential integrators, Acta Numerica 19 (2010) 209-286. · Zbl 1242.65109
[10] C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Review 20 (4) (1978) 801-836. · Zbl 0395.65012
[11] C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review 45 (1) (2003) 3-49. · Zbl 1030.65029
[12] R. B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Transac-tions on Mathematical Software 24 (1) (1998) 130-156. · Zbl 0917.65063
[13] J. Niesen, W. M. Wright, Algorithm 919: A Krylov subspace algorithm for evaluating the φ-functions appearing in exponential integrators, ACM Transactions on Mathematical Soft-ware (TOMS) 38 (3) (2012) 22. · Zbl 1365.65185
[14] S. Gaudreault, G. Rainwater, M. Tokman, KIOPS: A fast adaptive Krylov subspace solver for exponential integrators, Journal of Computational Physics 372 (2018) 236-255. · Zbl 1418.65074
[15] V. T. Luan, J. A. Pudykiewicz, D. R. Reynolds, Further development of efficient and accurate time integration schemes for meteorological models, Journal of Computational Physics 376 (2019) 817-837. · Zbl 1416.86011
[16] E. Gallopoulos, Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM Journal on Scientific and Statistical Computing 13 (5) (1992) 1236-1264. · Zbl 0757.65101
[17] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential oper-ator, SIAM Journal on Numerical Analysis 29 (1) (1992) 209-228. · Zbl 0749.65030
[18] M. Hochbruck, C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis 34 (5) (1997) 1911-1925. · Zbl 0888.65032
[19] S. Gaudreault, J. A. Pudykiewicz, An efficient exponential time integration method for the numerical solution of the shallow water equations on the sphere, Journal of Computational Physics 322 (2016) 827-848. · Zbl 1351.76106
[20] J. Loffeld, M. Tokman, Implementation of parallel adaptive-Krylov exponential solvers for stiff problems, SIAM Journal on Scientific Computing 36 (5) (2014) C591-C616. · Zbl 1307.65096
[21] J. Zhang, C. Zhou, Y. Wang, L. Ju, Q. Du, X. Chi, D. Xu, D. Chen, Y. Liu, Z. Liu, Extreme-scale phase field simulations of coarsening dynamics on the Sunway Taihulight supercom-puter, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’16), 2016, pp. 4:1-4:12.
[22] T.-T.-P. Hoang, L. Ju, Z. Wang, Overlapping localized exponential time differencing methods for diffusion problems, Communications in Mathematical Sciences 16 (6) (2018) 1531-1555. · Zbl 1410.65361
[23] X. Li, L. Ju, T.-T.-P. Hoang, Overlapping domain decomposition based exponential time dif-ferencing methods for semilinear parabolic equations, BIT: Numerical Mathematics, to ap-pear. · Zbl 1460.65115
[24] T.-T.-P. Hoang, L. Ju, Z. Wang, Nonoverlapping localized exponential time differenc-ing methods for diffusion problems, Journal of Scientific Computing 82 #37 (2020). https://doi.org/10.1007/s10915-020-01136-w. · Zbl 1431.65063 · doi:10.1007/s10915-020-01136-w
[25] T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, M. Maltrud, A multi-resolution approach to global ocean modeling, Ocean Modelling 69 (2013) 211-232.
[26] J. Thuburn, T. Ringler, W. Skamarock, J. Klemp, Numerical representation of geostrophic modes on arbitrarily structured C-grids, Journal of Computational Physics 228 (22) (2009) 8321-8335. · Zbl 1173.86304
[27] T. D. Ringler, J. Thuburn, J. B. Klemp, W. C. Skamarock, A unified approach to energy conser-vation and potential vorticity dynamics for arbitrarily-structured C-grids, Journal of Com-putational Physics 229 (9) (2010) 3065-3090. · Zbl 1307.76054
[28] Q. Du, V. Faber, M. Gunzburger, Centroidal voronoi tessellations: Applications and algo-rithms, SIAM Review 41 (4) (1999) 637-676. · Zbl 0983.65021
[29] Q. Du, M. D. Gunzburger, L. Ju, Constrained centroidal voronoi tessellations for surfaces, SIAM Journal on Scientific Computing 24 (5) (2003) 1488-1506. · Zbl 1036.65101
[30] M. Ben-Artzi, P. G. LeFloch, Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds, Annales De Linstitut Henri Poincare Non Linear Analy-sis 24 (6) (2007) 989-1008. · Zbl 1138.35055
[31] M. Ben-Artzi, J. Falcovitz, P. G. LeFloch, Hyperbolic conservation laws on the sphere. A geometry-compatible finite volume scheme, Journal of Computational Physics 228 (16) (2009) 5650-5668. · Zbl 1168.65372
[32] A. Beljadid, A. Mohammadian, H. M. Qiblawey, An unstructured finite volume method for large-scale shallow flows using the fourth-order Adams scheme, Computers & Fluids 88 (2013) 579-589. · Zbl 1390.86004
[33] T. D. Ringler, D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, W. Skamarock, Exploring a mul-tiresolution modeling approach within the shallow-water equations, Monthly Weather Re-view 139 (11) (2011) 3348-3368.
[34] C. Clancy, J. A. Pudykiewicz, On the use of exponential time integration methods in atmo-spheric models, Tellus A: Dynamic Meteorology and Oceanography 65 (1) (2013) 20898. · Zbl 1349.65205
[35] M. R. Petersen, D. W. Jacobsen, T. D. Ringler, M. W. Hecht, M. E. Maltrud, Evaluation of the arbitrary Lagrangian-Eulerian vertical coordinate method in the MPAS-Ocean model, Ocean Modelling 86 (2015) 93-113.
[36] Q. Chen, T. Ringler, P. R. Gent, Extending a potential vorticity transport eddy closure to include a spatially-varying coefficient, Computers & Mathematics with Applications 71 (11) (2016) 2206-2217. · Zbl 1443.86018
[37] K. Pieper, K. C. Sockwell, M. Gunzburger, Exponential time differencing for mimetic multi-layer ocean models, Journal of Computational Physics 398 (2019) 108900. · Zbl 1453.86019
[38] S. Sari, T. Rowan, M. Seaid, F. Benkhaldoun, Simulation of three-dimensional free-surface flows using two-dimensional multilayer shallow water equations, Communications in Com-putational Physics 27 (2020) 1413-1442. · Zbl 1473.65143
[39] J. Thuburn, C. J. Cotter, A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids, SIAM Journal on Scientific Computing 34 (3) (2012) B203-B225. · Zbl 1246.65155
[40] L. Ju, T. Ringler, M. Gunzburger, Voronoi tessellations and their application to climate and global modeling, in: Numerical techniques for global atmospheric models, Springer, 2010, pp. 313-342.
[41] D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, P. N. Swarztrauber, A standard test set for numerical approximations to the shallow water equations in spherical geometry, Journal of Computational Physics 102 (1) (1992) 211-224. · Zbl 0756.76060
[42] M. Hochbruck, A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM Journal on Numerical Analysis 43 (3) (2005) 1069-1090. · Zbl 1093.65052
[43] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear algebra and its applications 34 (1980) 269-295. · Zbl 0456.65017
[44] A. Koskela, Approximating the matrix exponential of an advection-diffusion operator us-ing the incomplete orthogonalization method, in: Numerical Mathematics and Advanced Applications-ENUMATH 2013, Springer, 2015, pp. 345-353. · Zbl 1328.65107
[45] G. Karypis, V. Kumar, A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, University of Minnesota, Department of Computer Science and Engineering, Army HPC Research Center, Minneapo-lis, MN.
[46] P. J. Wolfram, T. D. Ringler, M. E. Maltrud, D. W. Jacobsen, M. R. Petersen, Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via lagrangian, in situ, global, high-performance particle tracking (light), Journal of Physical Oceanography 45 (8) (2015) 2114-2133.
[47] J. Thuburn, Y. Li, Numerical simulation of Rossby-Haurwitz waves, Tellus A 52 (2) (2000) 181-189.
[48] R. K. Smith, D. G. Dritschel, Revisiting the Rossby-Haurwitz wave test case with contour advection, Journal of Computational Physics 217 (2) (2006) 473-484. · Zbl 1160.86305
[49] J.-G. Li, Shallow-water equations on a spherical multiple-cell grid, Quarterly Journal of the Royal Meteorological Society 144 (2018) 1-12.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.