×

An adaptive threshold dynamics method for three-dimensional wetting on rough surfaces. (English) Zbl 1473.65149

Summary: We propose an adaptive threshold dynamics method for wetting problems in three space dimensions. The method is based on solving a linear heat equation and a thresholding step in each iteration. The heat equation is discretized by a cell-centered finite volume method on an adaptively refined mesh. An efficient technique for volume conservation is developed on the nonuniform meshes based on a quick-sorting operation. By this method, we compute some interesting wetting problems on complicated surfaces. Numerical results verify some recent theories for the apparent contact angle on rough and chemically patterned surfaces.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76T10 Liquid-gas two-phase flows, bubbly flows

Software:

Surface Evolver
Full Text: DOI

References:

[1] G. Alberti and G. Bellettini. A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies. Euro. J. Appl. Math., 9(03):261-284, 1998. · Zbl 0932.49018
[2] G. Alberti and A. DeSimone. Wetting of rough surfaces: A homogenization approach. Proc. R. Soc. A, 451:79-97, 2005. · Zbl 1145.82321
[3] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley. Wetting and spreading. Rev. Mod. Phys., 81:739-805, 2009.
[4] E. Bormashenko. A variational approach to wetting of composite surfaces: Is wetting of composite surfaces a one-dimensional or two-dimensional phenomenon? Langmuir, 25:10451-10454, 2009.
[5] E. Bormashenko. Wetting of flat gradient surfaces. J. colloid interface sci., 515:264-267, 2018.
[6] K. A. Brakke. The surface evolver. Exp. math., 1(2):141-165, 1992. · Zbl 0769.49033
[7] J. H. Bramble, R. E. Ewing, J. E. Pasciak, and A. H. Schatz. A preconditioning technique for the efficient solution of problems with local grid refinement. Comput. Meth. Appl. Mech. Engrg., 67:149-159, 1988. · Zbl 0619.76113
[8] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial (second edition). SIAM, 2000. · Zbl 0958.65128
[9] A. Cassie and S. Baxter. Wettability of porous surfaces. Trans. Faraday Soc., 40:546-551, 1944.
[10] X. Chen, X.-P. Wang, and X. Xu. Analysis of the Cahn-Hilliard equation with relaxation boundary condition modelling contact angle. Arch. Rational Mech. Anal., 213:1-24, 2014. · Zbl 1293.35235
[11] W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen, and G. H. McKinley. A modified CassieBax-ter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J. Colloid Interface Sci., 339:208-216, 2009.
[12] P.G. de Gennes. Wetting: Statics and dynamics. Rev. Mod. Phys., 57:827-863, 1985.
[13] K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial differential equations and mean curvature flow. Acta numerica, 14:139-232, 2005. · Zbl 1113.65097
[14] D. W. Drelich, L. Boinovich, E. Chibowski, C. D. Volpe, L. Hołysz, A. Marmur, and S. Siboni. Contact angles: History of over 200 years of open questions. Surface Innov., pages 1-25, 2019.
[15] M. Elsey and S. Esedoglu. Threshold dynamics for anisotropic surface energies. Math. Comp., 87(312):1721-1756, 2018. · Zbl 1397.65156
[16] H. Y. Erbil. The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: a review. Surf. Sci. Rep., 69(4):325-365, 2014.
[17] S. Esedoglu and F. Otto. Threshold dynamics for networks with arbitrary surface tensions. Comm. Pure Appl. Math., 2015. · Zbl 1334.82072
[18] S. Esedoglu, S. Ruuth, and R. Tsai. Diffusion generated motion using signed distance func-tions. J. Comput. Phys., 229(4):1017-1042, 2010. · Zbl 1181.65031
[19] S. Esedoglu and R. Tsai. Threshold dynamics for the piecewise constant Mumford-shah functional. J. Comput. Phys., 211(1):367-384, 2006. · Zbl 1086.65522
[20] L. C. Evans. Convergence of an algorithm for mean curvature motion. Indiana Math. J., 42(2):533-557, 1993. · Zbl 0802.65098
[21] S. Guo, X. Xu, T. Qian, Y. Di, M. Doi, and P. Tong. Onset of thin film meniscus along a fibre. J. Fluid Mech., 865:650-680, 2019. · Zbl 1415.76034
[22] K. Ishii. Optimal rate of convergence of the Bence-Merriman-Osher algorithm for motion by mean curvature. SIAM J. Math. Anal., 37(3):841-866, 2005. · Zbl 1101.35006
[23] S. Jiang, D. Wang, and X. P. Wang. An efficient boundary integral scheme for the MBO threshold dynamics method via the NUFFT. J. Sci. Comput., 74:474-490, 2018. · Zbl 1419.65080
[24] W. Jiang, Y. Wang, D. J. Srolovitz, and W. Bao. Solid-state dewetting on curved substrates. Phy. Rev. Materials, 2(11):113401, 2018.
[25] C. Kublik, S. Esedoglu, and J. A. Fessler. Algorithms for area preserving flows. SIAM J. Sci. Comput., 33(5):2382-2401, 2011. · Zbl 1232.65012
[26] S. T. Larsen and R. Taboryski. A cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces. Langmuir, 25(3):1282-1284, 2009.
[27] T. Laux and F. Otto. Convergence of the thresholding scheme for multi-phase mean-curvature flow. Calc. Var. Partial Diff. Equ., 55(5):129, 2016. · Zbl 1388.35121
[28] C. Lv, C. Chen, Y. C. Chuang, F. G. Tseng, Y. Yin, F. Grey, and Q. Zheng. Substrate curvature gradient drives rapid droplet motion. Phy. Rev. Lett.Cal. Var. Partial Diff. Equ., 113:026101, 2014.
[29] S. McCormick and J. Thomas. The fast adaptive composite grid (FAC) method for elliptic equations. Math. Comp., 46(174):439-456, 1986. · Zbl 0594.65078
[30] B. Merriman, J. K. Bence, and S. J. Osher. Motion of multiple junctions: A level set approach. J. Comput. Phys., 112(2):334-363, 1994. · Zbl 0805.65090
[31] B. Osting and D. Wang. A diffusion generated method for orthogonal matrix-valued fields. Math. Comp., 2019, DOI:https://doi.org/10.1090/mcom/3473. · Zbl 1435.65144 · doi:10.1090/mcom/3473
[32] T. Qian, X.-P. Wang, and P. Sheng. Molecular scale contact line hydrodynamics of immiscible flows. Phy. Rev. E, 68(1):016306-15, July 2003.
[33] R. Raj, R. Enright, Y. Zhu, S. Adera, and E. N. Wang. Unified model for contact angle hys-teresis on heterogeneous and superhydrophobic surfaces. Langmuir, 28:15777-15788, 2012.
[34] W. Ren. Wetting transition on patterned surfaces: transition states and energy barriers. Langmuir, 30:2879-2885, 2014.
[35] S. J. Ruuth. A diffusion-generated approach to multiphase motion. J. Comput. Phys., 145(1):166-192, 1998. · Zbl 0929.76101
[36] S. J Ruuth and B. T. Wetton. A simple scheme for volume-preserving motion by mean cur-vature. J. Sci. Comput., 19(1-3):373-384, 2003. · Zbl 1035.65097
[37] Steven J Ruuth and Barry Merriman. Convolution-thresholding methods for interface mo-tion. J. Computat. Phys., 169(2):678-707, 2001. · Zbl 0988.65094
[38] K. Svadlenka, E. Ginder, and S. Omata. A variational method for multiphase volume-preserving interface motions. J. Comput. Appl. Math., 257:157-179, 2014. · Zbl 1294.53064
[39] D. Swartz and N. Yip. Convergence of diffusion generated motion to motion by mean cur-vature. Comm. Partial Differ. Equ., 42(10):1598-1643, 2017. · Zbl 1387.35389
[40] D. Wang, H. Li, X. Wei, and X.-P. Wang. An efficient iterative thresholding method for image segmentation. J. Comput. Phys., 350:657-667, 2017. · Zbl 1380.65048
[41] D. Wang, X. Xu, and X.-P. Wang. An improved threshold dynamics method for wetting dynamics. J. Comput. Phys., 392:291-310, 2019. · Zbl 1452.76191
[42] Dong Wang, Shidong Jiang, and Xiao-Ping Wang. An efficient boundary integral scheme for the threshold dynamics method ii: Applications to wetting dynamics. J. Sci. Comp., 81(3):1860-1881, 2019. · Zbl 1434.65168
[43] R. N. Wenzel. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 28:988-994, 1936.
[44] D. E. Womble. A front-tracking method for multiphase free boundary problems. SIAM J. Numer. Anal., 26(2):380-396, 1989. · Zbl 0681.65090
[45] X. Xu. Modified Wenzel and Cassie equation for wetting on rough surfaces. SIAM J. Appl. Math., 76:2353-2374, 2016. · Zbl 1357.41031
[46] X. Xu, Y. Di, and M. Doi. Variational method for liquids moving on a substrate. Phy. Fluids, 28(8):087101, 2016.
[47] X. Xu, D. Wang, and X.-P. Wang. An efficient threshold dynamics method for wetting on rough surfaces. J. Comput. Phys., 330:510-528, 2017. · Zbl 1378.76087
[48] X. Xu and X. P. Wang. Analysis of wetting and contact angle hysteresis on chemically pat-terned surfaces. SIAM J. Appl. Math., 71:1753-1779, 2011. · Zbl 1323.35153
[49] X. Xu and X. P. Wang. The modified Cassie’s equation and contact angle hysteresis. Colloid Polym. Sci., 291:299-306, 2013.
[50] T. Young. An essay on the cohesion of fluids. Philos. Trans. R. Soc. London, 95:65-87, 1805.
[51] H. Zhao, T. Chan, B. Merriman, and S. J. Osher. A variational level set approach to multi-phase motion. J. Comput. Phys., 127(1):179-195, 1996. · Zbl 0860.65050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.