×

Analysis and application of single level, multi-level Monte Carlo and quasi-Monte Carlo finite element methods for time-dependent Maxwell’s equations with random inputs. (English) Zbl 1473.65216

Summary: This article is devoted to three quadrature methods for the rapid solution of stochastic time-dependent Maxwell’s equations with uncertain permittivity, permeability and initial conditions. We develop the mathematical analysis of the error estimate for single level Monte Carlo method, multi-level Monte Carlo method, and the quasi-Monte Carlo method. The theoretical results are supplemented by numerical experiments.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65C05 Monte Carlo methods
35L15 Initial value problems for second-order hyperbolic equations
35Q60 PDEs in connection with optics and electromagnetic theory
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory

Software:

QMC4PDE
Full Text: DOI

References:

[1] I.M. Babuska, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 435 (2007) 1005-1034. · Zbl 1151.65008
[2] I. Babuska, R. Tempone and G. Zouraris, Galerkin finite element approximations of stochas-tic elliptic differential equations, SIAM J. Numer. Anal. 42 (2004) 800-825. · Zbl 1080.65003
[3] G. Bao, C. Chen and P. Li, Inverse random source scattering for elastic waves, SIAM J. Nu-mer. Anal. 55(6) (2017) 2616-2643. · Zbl 1434.74071
[4] A. Barth, C. Schwab and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1) (2011) 123-161. · Zbl 1230.65006
[5] P. Benner and J. Schneider, Uncertainty quantification for Maxwell’s equations using stochastic collocation and model order reduction, Int. J. Uncertain. Quantif. 5(3) (2015) 195-208. · Zbl 1498.78026
[6] C. Chauviére, J.S. Hesthaven and L. Lurati, Computational modeling of uncertainty in time-domain electromagnetics, SIAM J. Sci. Comput. 28(2) (2006) 751-775. · Zbl 1115.78014
[7] C. Chen, J. Hong and L. Ji, Mean-square convergence of a semidiscrete scheme for stochastic Maxwell equations, SIAM J. Numer. Anal. 57(2) (2019) 728-750. · Zbl 1422.60112
[8] P. Chen, A. Quarteroni and G. Rozza, A weighted reduced basis method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 51 (2013) 3163-3185. · Zbl 1288.65007
[9] K.A. Cliffe, M.B. Giles, R. Scheichl and A.L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci. 14(1) (2011) 3-15. · Zbl 1241.65012
[10] R. Cools, F. Y. Kuo and D. Nuyens, Constructing embedded lattice rules for multivariable integration, SIAM J. Sci. Comput. 28(6) (2006) 2162-2188. · Zbl 1126.65002
[11] J. Dick, F.Y. Kuo and I.H. Sloan, High-dimensional integration: the quasi-Monte Carlo way, Acta Numer. 22 (2013) 133-288. · Zbl 1296.65004
[12] J. Dick, I.H. Sloan, X. Wang and H. Woźniakowski, Liberating the weights, J. Complexity, 20 (2004) 593-623. · Zbl 1089.65005
[13] P. Dostert, Y. Efendiev, and T.Y. Hou, Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification, Comput. Meth-ods Appl. Mech. Engrg. 197 (2008) 3445-3455. · Zbl 1194.76112
[14] Z. Fang, J. Li, T. Tang and T. Zhou, Efficient stochastic Galerkin methods for Maxwell’s equations with random inputs, J. Sci. Comput. 80 (2019) 248-267. · Zbl 1416.78025
[15] X. Feng and C. Lorton, An efficient Monte Carlo interior penalty discontinuous Galerkin method for elastic wave scattering in random media, Comput. Methods Appl. Mech. Engrg. 315 (2017) 141-168. · Zbl 1439.74152
[16] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer, New York, 1991. · Zbl 0722.73080
[17] M.B. Giles, Multilevel Monte Carlo methods, Acta Numer. 2015 259-328. · Zbl 1316.65010
[18] I.G. Graham, F.Y. Kuo, J.A. Nichols, R. Scheichl, Ch. Schwab and I.H. Sloan, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients, Numer. Math. 131 (2015) 329-368. · Zbl 1341.65003
[19] M.D. Gunzburger, C.G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with random input data, Acta Numer. 23 (2014) 521-650. · Zbl 1398.65299
[20] Y. Hao, F. Kang, J. Li and K. Zhang, Computation of moments for Maxwell’s equations with random interfaces via pivoted low-rank approximation, J. Comput. Phys. 371 (2018) 1-19. · Zbl 1415.65019
[21] H. Harbrecht, M. Peters and M. Siebenmorgen, Multilevel accelerated quadrature for PDEs with log-normally distributed diffusion coefficient, SIAM/ASA J. Uncertain. Quantif. 4(1) (2016) 520-551. · Zbl 1343.65006
[22] Y. Huang, J. Li and C. Wu, Averaging for superconvergence: Verification and application of 2D edge elements to Maxwell’s equations in metamaterials, Comput. Methods Appl. Mech. Engrg. 255 (2013) 121-132. · Zbl 1297.78016
[23] C. Jerez-Hanckes, C. Schwab and J. Zech, Electromagnetic wave scattering by random sur-faces: shape holomorphy, Math. Models Methods Appl. Sci. 27(12) (2017) 2229-2259. · Zbl 1381.35170
[24] S. Jin, D. Xiu and X.Zhu, A well-balanced stochastic galerkin method for scalar hyperbolic balance laws with random inputs, J. Sci. Comput. 67(3) (2016) 1198-1218. · Zbl 1342.65010
[25] D. Kamilis and N. Polydorides, Uncertainty quantification for low-frequency, time-harmonic Maxwell equations with stochastic conductivity models, SIAM/ASA J. Uncer-tainty Quantification 6-4 (2018) 1295-1334. · Zbl 1405.35264
[26] M. Kovacs, S. Larsson and F. Saedpanah, Finite element approximation of the linear stochas-tic wave equation with additive noise, SIAM J. Numer. Anal. 48 (2010) 408-427. · Zbl 1217.65013
[27] F.Y. Kuo and D. Nuyens, Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation, Found Comput. Math. 16 (2016) 1631-1696. · Zbl 1362.65015
[28] F.Y. Kuo, C. Schwab and I.H. Sloan, Quasi-Monte Carlo methods for high-dimensional inte-gration: the standard (weighted Hilbert space) setting and beyond, The ANZIAM Journal 53(1) (2011) 1-37. · Zbl 1248.65001
[29] F.Y. Kuo, C. Schwab and I.H. Sloan, Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients, SIAM J. Numer. Anal. 50 (2012) 3351-3374. · Zbl 1271.65017
[30] J. Li and Z. Fang, Analysis and application of stochastic collocation methods for Maxwell’s equations with random inputs, Adv. Appl. Math. Mech. 10(6) (2018) 1305-1326. · Zbl 1488.65509
[31] J. Li, Z. Fang and G. Lin, Regularity analysis of metamaterial Maxwell’s equations with random coefficients and initial conditions, Comput. Methods Appl. Mech. Engrg. 335 (2018) 24-51. · Zbl 1440.78007
[32] J. Li and Y. Huang, Time-Domain Finite Element Methods for Maxwell’s Equations in Meta-materials, Springer Series in Computational Mathematics, vol.43, Springer, 2013. · Zbl 1304.78002
[33] G. Lord, C.E. Powell and T. Shardlow, An introduction to computational stochastic PDEs, Cambridge University Press, 2014. · Zbl 1327.60011
[34] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, Oxford, 2003. · Zbl 1024.78009
[35] M. Motamed, F. Nobile and R. Tempone, A stochastic collocation method for the second order wave equation with a discontinuous random speed, Numer. Math. 123 (2013) 493-536. · Zbl 1268.65008
[36] A. Narayan and T. Zhou, Stochastic collocation methods on unstructured meshes, Commun. Comput. Phys. 18 (2015) 1-36. · Zbl 1388.65127
[37] U. Römer, S. Schöps and T. Weiland, Stochastic modeling and regularity of the nonlinear elliptic curl-curl equation, SIAM/ASA J. Uncertainty Quantification 4 (2016) 952-979. · Zbl 1355.78014
[38] C. Schwab and C.J. Gittelson, Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, Acta Numer. 20 (2011) 291-467. · Zbl 1269.65010
[39] I.H. Sloan, X. Wang and H. Woźniakowski, Finite-order weights imply tractability of multi-variate integration, J. Complexity 20 (2004) 46-74. · Zbl 1067.65006
[40] I.H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complexity 14 (1998) 1-33. · Zbl 1032.65011
[41] R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2014. · Zbl 1284.65019
[42] T.J. Sullivan, Introduction to Uncertainty Quantification, Springer, 2015. · Zbl 1336.60002
[43] T. Tang and T. Zhou, Convergence analysis for stochastic collocation methods to scalar hy-perbolic equations with random wave speed, Commun. Comput. Phys. 8(1) (2010) 226-248. · Zbl 1364.65215
[44] A.L. Teckentrup, R. Scheichl, M.B. Giles and E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficient, Numer. Math. 125 (2013) 569-600. · Zbl 1306.65009
[45] J. Tryoen, O. LeMaitre, M. Ndjinga and A. Ern, Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems, J. Comput. Phys. 229 (2010) 6485-6511. · Zbl 1197.65013
[46] I.C. Tsantili, M.H. Cho, W. Cai and G. EM Karniadakis, A computational stochastic method-ology for the design of random meta-materials under geometric constraints, SIAM J. Sci. Comput. 40(2) (2018) B353-B378. · Zbl 1398.60073
[47] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, 2010. · Zbl 1210.65002
[48] D. Xiu and J. Shen, Efficient stochastic galerkin methods for random diffusion equations, J. Comput. Phys. 228(2) (2009) 266-281. · Zbl 1161.65008
[49] Z. Zhang, X. Hu, T.Y. Hou, G. Lin and M. Yan, An adaptive ANOVA-based data-driven stochastic method for elliptic PDEs with random coefficient, Commun. Comput. Phys. 16(3) (2014) 571-598. · Zbl 1388.65178
[50] Z. Zhang and G.E. Karniadakis, Numerical Methods for Stochastic Partial Differential Equa-tions with White Noise, Springer, 2017. · Zbl 1380.65021
[51] X. Zhong and Q. Li, Galerkin methods for stationary radiative transfer equations with un-certain coefficients, J. Sci. Comput. 76 (2018) 1105-1126. · Zbl 1397.65301
[52] T. Zhou and T. Tang, Galerkin methods for stochastic hyperbolic problems using bi-orthogonal polynomials, J. Sci. Comput. 51 (2012) 274-292. · Zbl 1262.65014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.