×

Adaptive Stokes preconditioning for steady incompressible flows. (English) Zbl 1488.35415

Summary: This paper describes an adaptive preconditioner for numerical continuation of incompressible Navier-Stokes flows based on Stokes preconditioning [42] which has been used successfully in studies of pattern formation in convection. The preconditioner takes the form of the Helmholtz operator \(I- \Delta tL\) which maps the identity (no preconditioner) for \(\Delta t\ll 1\) to Laplacian preconditioning for \(\Delta t \gg 1\). It is built on a first order Euler time-discretization scheme and is part of the family of matrix-free methods. The preconditioner is tested on two fluid configurations: three-dimensional doubly diffusive convection and a two-dimensional projection of a shear flow. In the former case, it is found that Stokes preconditioning is more efficient for \(\Delta t = \mathcal{O}(1)\), away from the values used in the literature. In the latter case, the simple use of the preconditioner is not sufficient and it is necessary to split the system of equations into two subsystems which are solved simultaneously using two different preconditioners, one of which is parameter dependent. Due to the nature of these applications and the flexibility of the approach described, this preconditioner is expected to help in a wide range of applications.

MSC:

35Q30 Navier-Stokes equations
35Q35 PDEs in connection with fluid mechanics
37M20 Computational methods for bifurcation problems in dynamical systems
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
65F08 Preconditioners for iterative methods
65P30 Numerical bifurcation problems
76D05 Navier-Stokes equations for incompressible viscous fluids
76E05 Parallel shear flows in hydrodynamic stability
76E06 Convection in hydrodynamic stability

References:

[1] D. Barkley, M. G. M. Gomes and R. D. Henderson, Three-dimensional instability in flow over a backward-facing step, J. Fluid Mech., 473 (2002), 167-190. · Zbl 1026.76019
[2] O. Batiste, E. Knobloch, A. Alonso and I. Mercader, Spatially localized binary-fluid convec-tion, J. Fluid Mech., 560 (2006), 149-158. · Zbl 1122.76029
[3] C. Beaume, A. Bergeon, H.-C. Kao and E. Knobloch, Convectons in a rotating fluid layer, J. Fluid Mech., 717 (2013), 417-448. · Zbl 1284.76139
[4] C. Beaume, A. Bergeon and E. Knobloch, Homoclinic snaking of localized states in doubly diffusive convection, Phys. Fluids, 23 (2011), 094102.
[5] C. Beaume, A. Bergeon and E. Knobloch, Convectons and secondary snaking in three-dimensional natural doubly diffusive convection, Phys. Fluids, 25 (2013), 024105.
[6] C. Beaume, G. P. Chini, K. Julien and E. Knobloch, Reduced description of exact coherent states in parallel shear flows, Phys. Rev. E, 91 (2015), 043010.
[7] C. Beaume, H.-C. Kao, E. Knobloch and A. Bergeon, Localized rotating convection with no-slip boundary conditions, Phys. Fluids, 25 (2013), 124105.
[8] C. Beaume, E. Knobloch and A. Bergeon, Nonsnaking doubly diffusive convectons and the twist instability, Phys. Fluids, 25 (2013), 114102. · Zbl 1419.76214
[9] A. Bergeon, D. Henry, H. Ben Hadid and L. S. Tuckerman, Marangoni convection in binary mixtures with Soret effect, J. Fluid Mech., 375 (1998), 143-177. · Zbl 0936.76019
[10] A. Bergeon and E. Knobloch, Natural doubly diffusive convection in three-dimensional en-closures, Phys. Fluids, 14 (2002), 3233-3250. · Zbl 1185.76049
[11] K. Borońska and L. S. Tuckerman, Extreme multiplicity in cylindrical Rayleigh-Bénard con-vection II. Bifurcation diagram and symmetry classification, Phys. Rev. E, 81 (2010), 036321.
[12] M. Chantry, A. P. Willis and R. R. Kerswell, Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow, Phys. Rev. Lett., 112 (2014), 164501.
[13] R. M. Clever and F. H. Busse, Tertiary and quaternary solutions for plane Couette flow, J. Fluid Mech., 344 (1997), 137-153. · Zbl 0898.76028
[14] R. H. Clewley, W. E. Sherwood, M. D. LaMar and J. M. Guckenheimer, PyDSTool, A Software Environment for Dynamical Systems Modeling, (2007).
[15] H. A. V. der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), 631-644. · Zbl 0761.65023
[16] H. A. Dijkstra, F. W. Wubs, A. K. Cliffe, E. Doedel, I. F. Dragomirescu, B. Eckhardt, A. Y. Gelfgat, A. L. Hazel, V. Lucarini, A. G. Salinger, E. T. Phipps, J. Sanchez-Umbria, H. Schutte-laars, L. S. Tuckerman and U. Thiele, Numerical bifurcation methods and their applications to fluid dynamics: analysis beyond simulation, Commun. Comput. Phys., 15 (2014), 1-45. · Zbl 1373.76026
[17] E. J. Doedel, A. R. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paf-fenroth, B. Sandstede, X. Wang and C. Zhang, AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, 2008.
[18] K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations, Technical Report TW-330, Dep. Comp. Sci., KU Leuven, (2001).
[19] H. Faisst and B. Eckhardt, Traveling waves in pipe flow, Phys. Rev. Lett., 91 (2003), 224502. · Zbl 1116.76362
[20] F. Feudel, K. Bergemann, L. S. Tuckerman, C. Egbers, B. Futterer, M. Gellert and R. Holler-bach, Convection patterns in a spherical fluid shell, Phys. Rev. E, 83 (2011), 046304.
[21] M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE, 93 (2005), 216-231.
[22] J. F. Gibson, Channelflow: A spectral Navier-Stokes simulator in C++, tech. rep., U. New Hampshire, 2012. http://channelflow.org/.
[23] J. F. Gibson and E. Brand, Spanwise-localized solutions of planar shear flows, J. Fluid Mech., 745 (2014), 25-61.
[24] J. F. Gibson, J. Halcrow and P. Cvitanović, Equilibrium and travelling-wave solutions of plane Couette flow, J. Fluid Mech., 638 (2009), 243-266. · Zbl 1183.76688
[25] G. Kawahara, M. Uhlmann and L. van Veen, The significance of simple invariant solutions in turbulent flows, Annu. Rev. Fluid Mech., 44 (2012), 203-225. · Zbl 1352.76031
[26] H. B. Keller, Numerical Solutions of Bifurcation and Non-Linear Eigenvalues Problem: Ap-plication of Bifurcation Theory, Academic Press New York, (1977).
[27] B. Krauskopf, H. M. Osinga and J. Galán-Viosque, Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, Springer-Verlag, 2007. · Zbl 1117.65005
[28] Y. A. Kuznetsov, A. Dhooge and W. Govaerts, Matcont: a MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw., 29 (2003), 141-164. · Zbl 1070.65574
[29] D. Lo Jacono, A. Bergeon and E. Knobloch, Magnetohydrodynamic Convectons, J. Fluid Mech., 687 (2011), 595-605. · Zbl 1241.76454
[30] D. Lo Jacono, A. Bergeon and E. Knobloch, Three-dimensional spatially localized binary-fluid convection in a porous medium, J. Fluid Mech., 730 (2013), R2. · Zbl 1291.76295
[31] C. K. Mamun and L. S. Tuckerman, Asymmetry and Hopf bifurcation in spherical Couette flow, Phys. Fluids, 7 (1995), 80-91. · Zbl 0836.76033
[32] K. Melnikov, T. Kreilos and B. Eckhardt, Long-wavelength instability of coherent structures in plane Couette flow, Phys. Rev. E, 89 (2014), 043008.
[33] I. Mercader, O. Batiste, A. Alonso and E. Knobloch, Localized pinning states in closed con-tainers: Homoclinic snaking without bistability, Phys. Rev. E, 80 (2009), 025201(R).
[34] I. Mercader, O. Batiste, A. Alonso and E. Knobloch, Convectons, anticonvectons and multi-convectons in binary fluid convection, J. Fluid Mech., 667 (2011), 586-606. · Zbl 1225.76107
[35] M. Nagata, Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity, J. Fluid Mech., 217 (1990), 519-527.
[36] C. C. T. Pringle and R. R. Kerswell, Asymmetric, helical and mirror-symmetric traveling waves in pipe flow, Phys. Rev. Lett., 99 (2007), 074502.
[37] J. Sanchez, F. Marques and J. M. Lopez, A continuation and bifurcation technique for Navier-Stokes flows, J. Comput. Phys., 180 (2002), 78-98. · Zbl 1130.76401
[38] T. M. Schneider, J. F. Gibson and J. Burke, Snakes and ladders: Localized solutions of plane Couette flow, Phys. Rev. Lett., 104 (2010), 104501.
[39] R. Seydel, Practical Bifurcation and Stability Analysis, Interdisciplinary Applied Mathemat-ics, Springer, 2009. · Zbl 1195.34004
[40] R. Seydel and V. Hlavacek, Role of continuation in engineering analysis, Chem. Eng. Sci., 42 (1987), 1281-1295.
[41] J. F. Torres, D. Henry, A. Komiya and S. Maruyama, Bifurcation analysis of steady natural convection in a tilted cubical cavity with adiabatic sidewalls, J. Fluid Mech., 756 (2014), 650-688.
[42] L. S. Tuckerman, Steady-state solving via stokes preconditioning; recursion relations for el-liptic operators, in 11th International Conference on Numerical Methods in Fluid Dynamics, D. Dwoyer, M. Hussaini and R. Voigt, eds., vol. 323 of Lecture Notes in Physics, Springer Berlin Heidelberg, 1989, 573-577.
[43] L. S. Tuckerman, Laplacian preconditioning for the inverse Arnoldi method, Commun. Comput. Phys., 18 (2015), 1336-1351. · Zbl 1388.65029
[44] H. Uecker, D. Wetzel and J. D. M. Rademacher, Pde2path-a Matlab package for continuation and bifurcation in 2D elliptic systems, Numer. Math. Theor. Methods Appl., 7 (2014), 58-106. · Zbl 1313.65311
[45] D. Viswanath, The critical layer in pipe flow at high Reynolds numbers, Phil. Trans. R. Soc. A, 367 (2009), 561-576. · Zbl 1221.76098
[46] F. Waleffe, Homotopy of exact coherent structures in plane shear flows, Phys. Fluids, 15 (2003), 1517-1534. · Zbl 1186.76556
[47] J. Wang, J. Gibson and F. Waleffe, Lower branch coherent states in shear flows: Transition and control, Phys. Rev. Lett., 98 (2007), 204501.
[48] H. Wedin and R. R. Kerswell, Exact coherent structures in pipe flow: travelling wave solu-tions, J. Fluid Mech., 508 (2004), 333-371. · Zbl 1065.76072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.