×

A particle Fokker-Planck algorithm with multiscale temporal discretization for rarefied and continuum gas flows. (English) Zbl 1488.76123

Summary: For gas flows with moderate and low Knudsen numbers, pair-wise collisions in the Boltzmann equation can be approximated by the Langevin model corresponding to the Fokker-Planck equation. Using this simplified collision model, particle numerical schemes, e.g. the Fokker-Planck model (FPM) method, can simulate low Knudsen number gas flows more efficient than those based on the Boltzmann equation, such as the Direct Simulation Monte Carlo (DSMC) method. However, as analyzed in this paper, the transport properties of the FPM method deviate from the physical values as the time step increases, and this problem affects its computational accuracy and efficiency for the simulation of multi-scale flows. Here we propose a particle Fokker-Planck algorithm with multiscale temporal discretization (MTD-FPM) to overcome the drawbacks of the original FPM method. In the MTD-FPM method, the molecular motion is tracked following the integration scheme of the Langevin model in analogy to the original FPM method. However, to ensure consistent transport coefficients for arbitrary temporal discretization, a time step dependent friction coefficient has been implemented. Several benchmark problems, including Couette, thermal Couette, Poiseuille, and Sod tube flows, are simulated to validate the proposed MTD-FPM method.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
Full Text: DOI

References:

[1] F. La Torre, J. L. Moerel, and C. R. Kleijn, Hybrid simulations of rarefied supersonic gas flows in micro-nozzles, Comput. Fluids, 49 (2011), 312-322. · Zbl 1271.76303
[2] E. Titov, A. Gallagher-Rogers, D. Levin, and B. Reed, Examination of a collision-limiter di-rect simulation Monte Carlo method for micropropulsion applications, J. Propul. Power, 24 (2008), 311-321.
[3] M. S. Ivanov and S. F. Gimelshein, Computational hypersonic rarefied flows, Ann. Rev. Fluid Mech., 30 (1998), 469-505. · Zbl 1398.76088
[4] R. Votta, A. Schettino, and A. Bonfiglioli, Hypersonic high altitude aerothermodynamics of a space re-entry vehicle, Aerosp. Sci. Technol., 25 (2013), 253-265.
[5] G. A. Bird, Molecular Gas Dynamics and Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.
[6] D. B. Hash and H. A. Hassan, Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods, J. Thermophys. Heat Transf., 10 (1996), 242-249.
[7] Q. Sun, I. D. Boyd, and G. V. Candler, A hybrid continuum/particle approach for modeling rarefied gas flows, J. Comput. Phys., 194 (2004), 256-277. · Zbl 1136.76420
[8] T. E. Schwartzentruber and I. D. Boyd, A hybrid particle-continuum method applied to shock waves, J. Comput. Phys., 215 (2006), 402-416. · Zbl 1107.76059
[9] T. E. Schwartzentruber, L. C. Scalabrin, and I. D. Boyd, A modular particle-continuum nu-merical method for hypersonic non-equilibrium gas flows, J. Comput. Phys., 225 (2007), 1159-1174. · Zbl 1343.76057
[10] H. Wijesinghe, and N. Hadjiconstantinou, Discussion of hybrid atomistic-continuum meth-ods for multiscale hydrodynamics, Int. J. Multi Comp. Eng., 2 (2004), 189-202.
[11] K. Xu and J. C. Huang, A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys., 229 (2010), 7747-7764. · Zbl 1276.76057
[12] J. C. Huang, K. Xu, and P. B. Yu, A unified gas-kinetic scheme for continuum and rarefied flows. III: Microflow simulations, Commun. Comput. Phys., 14 (2013), 1147-1173. · Zbl 1373.76217
[13] C. Liu, K. Xu, Q. Sun, and Q. Cai, A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations, J. Comput. Phys., 314 (2016), 305-340. · Zbl 1349.82055
[14] P. Jenny, M. Torrilhon, and S. Heinz, A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion, J. Comput. Phys., 229 (2010), 1077-1098. · Zbl 1285.76031
[15] M. H. Gorji, M. Torrilhon, and P. Jenny, Fokker-Planck model for computational studies of monatomic rarefied gas flows, J. Fluid Mech., 680 (2011), 574-601. · Zbl 1241.76342
[16] M. H. Gorji and P. Jenny, An efficient particle Fokker-Planck algorithm for rarefied gas flows, J. Comput. Phys., 263 (2014), 325-343. · Zbl 1349.82045
[17] M. H. Gorji and P. Jenny, A kinetic model for gas mixtures based on a Fokker-Planck Equa-tion, J. Phys. Conf. Ser., 362 (2012), 012042.
[18] M. H. Gorji and P. Jenny, A Fokker-Planck based kinetic model for diatomic rarefied gas flows, Phys. Fluids, 25 (2013), 062006.
[19] F. Filbet and L. Pareschi, A numerical method for the accurate solution of the Fokker-Planck-Landau equation in the nonhomogeneous case, J. Comput. Phys., 179 (2002), 1-26. · Zbl 1003.82011
[20] M. Lemou and L. Mieussens, Implicit schemes for the Fokker-Planck-Landau equation, SIAM J. Sci. Comput., 27 (2005), 809-830. · Zbl 1096.82015
[21] S. Jin and B. Yan, A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation, J. Comput. Phys., 230 (2011), 6420-6437. · Zbl 1408.76594
[22] S. Heinz, Molecular to fluid dynamics: the consequences of stochastic molecular motion, Phys. Rev. E, 70 (2004), 036308.
[23] M. H. Gorji and P. Jenny, Fokker-Planck-DSMC algorithm for simulations of rarefied gas flows, J. Comput. Phys., 287 (2015), 110-129. · Zbl 1351.82074
[24] M. H. Gorji, N. Andric, and P. Jenny, Variance reduction for Fokker-Planck based particle Monte Carlo schemes, J. Comput. Phys., 295 (2015), 644-664. · Zbl 1349.82085
[25] K. Xu, A gas-kinetic BGK scheme for the NavierCStokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys., 171 (2001), 289-335. · Zbl 1058.76056
[26] F. Fei and J. Fan, A diffusive information preservation method for small Knudsen number flows, J. Comput. Phys., 243 (2013), 179-193. · Zbl 1349.82079
[27] F. Fei, J. Fan, et al., Statistical simulation of decaying and forced homogeneous isotropic turbulence, in: J. Fan (Ed.), 29th International Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings 1628, 2014, 1356-1362.
[28] D. D. Zeng, F. Q. Zhong, and J. Fan, Molecular simulation of 3D turbulent channel flow, in: J. Fan (Ed.), 29th International Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings 1628, 2014, 1349-1355.
[29] F. Fei, Z.H. Liu, and C. G. Zheng, Statistical simulation of molecular diffusion effect on turbulent tetrad dispersion, Int. J. Heat Mass Transfer, 103 (2016), 87-98.
[30] J. Zhang, D. D. Zeng, and J. Fan, Statistical simulation of molecular diffusion effect on tur-bulent tetrad dispersion, Physica A, 411 (2014), 104-112. · Zbl 1395.82235
[31] S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys., 15 (1943), 1-89. · Zbl 0061.46403
[32] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001. · Zbl 1267.82001
[33] C. W. Gardiner, Handbook of Stochastic Methods, Springer-Verlag, 1985.
[34] C. Shen, Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows, Springer Press, Berlin, 2005.
[35] E. Helfand, Transport coefficients from dissipation in a canonical ensemble, Phys. Rev., 119 (1960), 1-9. · Zbl 0089.45103
[36] T. Onskog and J. Zhang, An accurate treatment of diffuse reflection boundary conditions for a stochastic particle Fokker-Planck algorithm with large time steps, Physica A, 440 (2015), 139-146. · Zbl 1400.76068
[37] R. S. Myong, A full analytical solution for the force-driven compressible Poiseuille gas flow based on a nonlinear coupled constitutive relation, Phys. Fluid, 23 (2011), 012002.
[38] G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27 (1978), 1-31. · Zbl 0387.76063
[39] S. Tiwari, A. Klar, and S. Hardt, A particle-particle hybrid method for kinetic and continuum equations, J. Comput. Phys., 228 (2009), 7109-7124. · Zbl 1175.82049
[40] J.M.O. De Zarate and J. V. Sengers, Hydrodynamic fluctuations in fluids and fluid mixtures, Elsevier, 2006.
[41] N. G. Hadjiconstantinou, A. L. Garcia, M. Z. Bazant, and G. He, Statistical error in particle simulations of hydrodynamic phenomena, J. Comput. Phys., 187 (2003), 274-297. · Zbl 1047.76578
[42] J. Mathiaud and L. Mieussens, A Fokker-Planck Model of the Boltzmann Equation with Correct Prandtl Number, J. Stat. Phys., 162 (2016), 397-414. · Zbl 1373.82059
[43] S. K. Singh and S. Ansumali, Fokker-Planck model of hydrodynamics, Phys. Rev. E, 91 (2015), 033303.
[44] K. C. Kannenberg and I. D. Boyd, Three-dimensional Monte Carlo simulations of plume impingement, J. Thermophys. Heat Transf., 13 (1999), 226-235.
[45] F. Sharipov and D. V. Kozak, Rarefied gas flow through a thin slit into vacuum simulated by the Monte Carlo method over the whole range of the Knudsen number, J. Vac. Sci. Technol., A, Vac. Surf. Films, 27 (2009), 479-484.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.