×

SL\(_\ast\) over local and adèle rings: \(\ast\)-Euclideanity and Bruhat generators. (English) Zbl 1512.20174

Summary: Let \((R,\ast)\) be a ring with involution and let \(A=\mathrm{M}(n, R)\) be the matrix ring endowed with the \(\ast\)-transpose involution. We study \(\mathrm{SL}_\ast(2, A)\) and the question of Bruhat generation over commutative and non-commutative local and adèlic rings \(R\). An important tool is the property of a ring being \(\ast\)-Euclidean. In this regard, we introduce the notion of a \(\ast\)-local ring \(R\), prove that \(A\) is \(\ast\)-Euclidean and explore reduction modulo the Jacobson radical for such rings. Globally, we provide an affirmative answer to the question whether a commutative adèlic ring \(R\) leads towards the ring \(A\) being \(\ast\)-Euclidean; while the non-commutative adèlic quaternions are such that \(A\) is \(\ast\)-Euclidean and \(\mathrm{SL}_\ast\) is generated by its Bruhat elements if and only if the characteristic is 2.

MSC:

20G35 Linear algebraic groups over adèles and other rings and schemes
20F05 Generators, relations, and presentations of groups
16L30 Noncommutative local and semilocal rings, perfect rings

References:

[1] Artin, E., Geometric algebra, (Interscience Tracts in Pure and Applied Mathematics 3. Interscience Tracts in Pure and Applied Mathematics 3, New York (1957)) · Zbl 0642.51001
[2] Bass, H., K-theory and stable algebra, Publ. Math. IHÉS, 22, 5-60 (1964) · Zbl 0248.18025
[3] Cruickshank, J.; Gutiérrez Frez, L.; Szechtman, F., Weil representations via abstract data and Heisenberg groups: a comparison, J. Algebra, 547, 129-161 (2020) · Zbl 1456.20002
[4] Lam, T. Y., A First Course in Noncommutative Rings, Graduate Texts in Mathematics, vol. 131 (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0980.16001
[5] Pantoja, J.; Soto-Andrade, J., A Bruhat decomposition of the group \(\operatorname{SL}_\ast(2, A)\), J. Algebra, 262, 401-412 (2003) · Zbl 1109.20045
[6] Pantoja, J.; Soto-Andrade, J., Bruhat presentations for ⁎-classical groups, Commun. Algebra, 37, 4170-4191 (2009) · Zbl 1188.20025
[7] Serre, J.-P., Trees, Springer Monographs in Mathematics (1980), Springer-Verlag: Springer-Verlag Berlin · Zbl 1013.20001
[8] Soto-Andrade, J., Représentations de certains groupes symplectiques finis, Mém. Soc. Math. Fr., 55-56, 344 (1978) · Zbl 0389.20012
[9] Vignéras, M.-F., Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800 (1980), Springer-Verlag: Springer-Verlag Berlin · Zbl 0422.12008
[10] Weil, A., Basic Number Theory, Classics in Math. (1995), Springer-Verlag: Springer-Verlag Berlin · Zbl 0823.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.