×

Fusion systems on a Sylow \(p\)-subgroup of \(SU_4(p)\). (English) Zbl 1490.20019

It is in general not easy to determine fusion systems on large \(p\)-groups. The paper finds all saturated fusion systems on a Sylow \(p\)-subgroup \(S\) of \(\mathrm{SU}_4(p)\) for odd \(p\), where \(S\) has order \(p^6\). Recall that a saturated fusion system is “realizable” if it is isomorphic to \(\mathcal{F}_S(G)\) for some finite group \(G\) containing \(S\) as a Sylow subgroup; otherwise, it is called “exotic”. We can see many special properties of exotic fusion systems from different perspectives. Thus, for a \(p\)-group \(S\), it is a focus of interest to determine whether there are exotic fusion systems on \(S\). The paper also proves that none of the fusion systems on a Sylow \(p\)-subgroup of \(\mathrm{SU}_4(p)\) is exotic, where \(p\) is an odd prime. Owing to previous work by B. Oliver [Mem. Am. Math. Soc. 1131, v, 100 p. (2016; Zbl 1382.20023)] and the work by E. Baccanelli et al. [J. Group Theory 22, No. 4, 689–711 (2019; Zbl 1468.20039)], the paper mainly focuses on the case when \(p\ge 5\).

MSC:

20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D05 Finite simple groups and their classification
20D15 Finite nilpotent groups, \(p\)-groups

References:

[1] Aschbacher, Michael; Kessar, Radha; Oliver, Bob, Fusion Systems in Algebra and Topology, London Mathematical Society Lecture Note Series, vol. 391 (2011), Cambridge University Press: Cambridge University Press Cambridge, MR 2848834 · Zbl 1255.20001
[2] Aschbacher, Michael; Oliver, Bob, Fusion systems, Bull. Am. Math. Soc. (N. S.), 53, 4, 555-615 (2016), MR3544261 · Zbl 1397.20028
[3] Aschbacher, Michael, Finite Group Theory, Cambridge Studies in Advanced Mathematics, vol. 10 (1986), Cambridge University Press: Cambridge University Press Cambridge, MR 895134 · Zbl 0583.20001
[4] Broto, Carles; Castellana, Natàlia; Grodal, Jesper; Levi, Ran; Oliver, Bob, Extensions of p-local finite groups, Trans. Am. Math. Soc., 359, 8, 3791-3858 (2007), MR 2302515 · Zbl 1145.55013
[5] Baccanelli, Elisa; Franchi, Clara; Mainardis, Mario, Fusion systems on a Sylow 3-subgroup of the McLaughlin group, J. Group Theory, 22, 4, 689-711 (2019) · Zbl 1468.20039
[6] Bray, John N.; Holt, Derek F.; Roney-Dougal, Colva M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Mathematical Society Lecture Note Series, vol. 407 (2013), Cambridge University Press: Cambridge University Press Cambridge, MR 3098485 · Zbl 1303.20053
[7] Blackburn, Norman, On a special class of p-groups, Acta Math., 100, 45-92 (1958), MR 0102558 · Zbl 0083.24802
[8] Brauer, Richard; Nesbitt, Cecil, On the modular characters of groups, Ann. Math., 556-590 (1941) · Zbl 0027.15202
[9] Chermak, Andrew, Quadratic pairs, J. Algebra, 277, 1, 36-72 (2004), MR 2059620 · Zbl 1057.20001
[10] Gorenstein, Daniel; Lyons, Richard; Solomon, Ronald, The Classification of the Finite Simple Groups. Number 2. Part I. Chapter G, Mathematical Surveys and Monographs, vol. 40 (1996), American Mathematical Society: American Mathematical Society Providence, RI, MR 1358135 · Zbl 0836.20011
[11] Gorenstein, Daniel; Lyons, Richard; Solomon, Ronald, The Classification of the Finite Simple Groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40 (1998), American Mathematical Society: American Mathematical Society Providence, RI, MR 1490581 · Zbl 0890.20012
[12] Gorenstein, Daniel, Finite Groups (1980), Chelsea Publishing Co.: Chelsea Publishing Co. New York, MR 569209 · Zbl 0463.20012
[13] Grazian, Valentina, Fusion systems containing pearls, J. Algebra, 510, 98-140 (2018) · Zbl 1415.20009
[14] Huppert, Bertram, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, vol. 134 (1967), Springer-Verlag: Springer-Verlag Berlin-New York, MR 0224703 · Zbl 0217.07201
[15] Kleidman, Peter; Liebeck, Martin, The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, vol. 129 (1990), Cambridge University Press: Cambridge University Press Cambridge, MR 1057341 · Zbl 0697.20004
[16] Liebeck, Martin W.; Seitz, Gary M., Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras, Mathematical Surveys and Monographs, vol. 180 (2012), American Mathematical Society: American Mathematical Society Providence, RI, MR 2883501 · Zbl 1251.20001
[17] Moragues Moncho, Raul, Fusion systems on p-groups with an extraspecial subgroup of index p (2019), University of Birmingham, Available at · Zbl 1490.20019
[18] Oliver, Bob, Reduced fusion systems over 2-groups of sectional rank at most 4, Mem. Am. Math. Soc., 239, 1131 (2016), v+100, MR 3431946 · Zbl 1382.20023
[19] Parker, Chris; Semeraro, Jason, Algorithms for fusion systems with applications to p-groups of small order, axRiv preprint: · Zbl 1478.20016
[20] Parker, Chris; Semeraro, Jason, Fusion systems over a Sylow p-subgroup of \(\text{G}_2(p)\), Math. Z., 289, 1-2, 629-662 (2018), MR 3803806 · Zbl 1483.20042
[21] Ruiz, Albert; Viruel, Antonio, The classification of p-local finite groups over the extraspecial group of order \(p^3\) and exponent p, Math. Z., 248, 1, 45-65 (2004), MR 2092721 · Zbl 1062.20022
[22] Srinivasan, Bhama, The characters of the finite symplectic group \(\operatorname{Sp}(4, q)\), Trans. Am. Math. Soc., 131, 488-525 (1968), MR 0220845 · Zbl 0213.30401
[23] Winter, David L., The automorphism group of an extraspecial p-group, Rocky Mt. J. Math., 2, 2, 159-168 (1972), MR 0297859 · Zbl 0242.20023
[24] Zsigmondy, Karl, Zur Theorie der Potenzreste, Monatshefte Math. Phys., 3, 1, 265-284 (1892), MR 1546236 · JFM 24.0176.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.