×

Security of continuous-variable measurement-device-independent quantum key distribution with imperfect state preparation. (English) Zbl 1477.81030

Summary: The state preparation operation of continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol may become imperfect in practical applications. We address the security of the CV-MDI-QKD protocol based on imperfect preparation of the coherent state under realistic conditions of lossy and noisy quantum channel. Specifically, we assume that the imperfection of Alice’s and Bob’s practical state preparations equal to the amplification of ideal modulators and lasers at both Alice’s and Bob’s sides by untrusted third-parties Fred and Gray employing phase-insensitive amplifiers (PIAs), respectively. The equivalent excess noise introduced by the imperfect state preparation is comprehensively and quantitatively calculated by adopting the gains of PIAs. Security analysis shows that CV-MDI-QKD is quite sensitive to the imperfection of practical state preparation, which inevitably deteriorates the performance and security of CV-MDI-QKD system. Moreover, a lower bound of the secret key rate is derived under arbitrary collective attacks, and the upper threshold of this imperfection tolerated by the system is obtained in the form of the specific gains of PIAs. In addition, the methods presented will improve and perfect the practical security of CV-MDI-QKD protocol.

MSC:

81P70 Quantum coding (general)
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P15 Quantum measurement theory, state operations, state preparations
81P94 Quantum cryptography (quantum-theoretic aspects)
81P47 Quantum channels, fidelity
Full Text: DOI

References:

[1] Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H., Quantum cryptography, Rev. Mod. Phys., 74, 145 (2002) · Zbl 1371.81006
[2] Bennett, C. H.; Brassard, G., Quantum cryptography: public key distribution and coin tossing, (Proceedings IEEE Int. Conf. on Computers, Systems and Signal Processing. Proceedings IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India (1984), IEEE: IEEE New York), 175-179
[3] Ekert, A. K., Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 67, 661 (1991) · Zbl 0990.94509
[4] Bennett, C. H.; Bessette, F.; Brassard, G.; Salvail, L.; Smolin, J. A., Experimental quantum cryptography, J. Cryptol., 5, 3 (1992) · Zbl 1114.94005
[5] Ralph, T. C., Continuous variable quantum cryptography, Phys. Rev. A, 61, Article 010303 pp. (1999)
[6] Grosshans, F.; Grangier, P., Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett., 88, Article 057902 pp. (2002)
[7] Grosshans, F.; Assche, G. V.; Wenger, J.; Brouri, R.; Cerf, N. J.; Grangier, P., Quantum key distribution using Gaussian-modulated coherent states, Nature, 421, 238 (2003)
[8] Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N. J.; Ralph, T. C.; Shapiro, J. H.; Lloyd, S., Gaussian quantum information, Rev. Mod. Phys., 84, 621 (2012)
[9] Navascus, M.; Grosshans, F.; Acín, A., Optimality of Gaussian attacks in continuous-variable quantum cryptography, Phys. Rev. Lett., 97, Article 190502 pp. (2006)
[10] Renner, R.; Cirac, J. I., de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography, Phys. Rev. Lett., 102, Article 110504 pp. (2009)
[11] Leverrier, A.; García-Patrón, R.; Renner, R.; Cerf, N. J., Security of continuous-variable quantum key distribution against general attacks, Phys. Rev. Lett., 110, Article 030502 pp. (2013)
[12] Leverrier, A., Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction, Phys. Rev. Lett., 118, Article 200501 pp. (2017)
[13] Leverrier, A., Composable security proof for continuous-variable quantum key distribution with coherent states, Phys. Rev. Lett., 114, Article 070501 pp. (2015)
[14] Jouguet, P.; Kunz-Jacques, S.; Leverrier, A.; Grangier, P.; Diamanti, E., Experimental demonstration of long-distance continuous-variable quantum key distribution, Nat. Photonics, 7, 378 (2013)
[15] Huang, D.; Huang, P.; Lin, D.; Zeng, G., Long-distance continuous-variable quantum key distribution by controlling excess noise, Sci. Rep., 6, Article 19201 pp. (2016)
[16] Huang, D.; Huang, P.; Li, H.; Wang, T.; Zhou, Y.; Zeng, G., Field demonstration of a continuous-variable quantum key distribution network, Opt. Lett., 41, 3511 (2016)
[17] Brassard, G.; Lutkenhaus, N.; Mor, T.; Sanders, B. C., Limitations on practical quantum cryptography, Phys. Rev. Lett., 85, 1330 (2000)
[18] Filip, R., Continuous-variable quantum key distribution with noisy coherent states, Phys. Rev. A, 77, Article 022310 pp. (2008)
[19] Shen, Y.; Yang, J.; Guo, H., Security bound of continuous-variable quantum key distribution with noisy coherent states and channel, J. Phys. B, 42, Article 235506 pp. (2009)
[20] Yuan, Z. L.; Dynes, J. F.; Shields, A. J., Avoiding the blinding attack in QKD, Nat. Photonics, 4, 800-801 (2010)
[21] Usenko, V. C.; Filip, R., Feasibility of continuous-variable quantum key distribution with noisy coherent states, Phys. Rev. A, 81, Article 022318 pp. (2010)
[22] Jouguet, P.; Kunz-Jacques, S.; Diamanti, E.; Leverrier, A., Analysis of imperfections in practical continuous-variable quantum key distribution, Phys. Rev. A, 86, Article 032309 pp. (2012)
[23] Braunstein, S. L.; Pirandola, S., Side-channel-free quantum key distribution, Phys. Rev. Lett., 108, Article 130502 pp. (2012)
[24] Lo, H.-K.; Curty, M.; Qi, B., Measurement-device-independent quantum key distribution, Phys. Rev. Lett., 108, Article 130503 pp. (2012)
[25] Pirandola, S.; Ottaviani, C.; Spedalieri, G., High-rate measurement-device-independent quantum cryptography, Nat. Photonics, 9, 397-402 (2015)
[26] Ma, X.-C.; Sun, S.-H.; Jiang, M.-S.; Gui, M.; Liang, L.-M., Gaussian-modulated coherent-state measurement-device-independent quantum key distribution, Phys. Rev. A, 89, Article 042335 pp. (2014)
[27] Li, Z.; Zhang, Y.-C.; Xu, F.; Peng, X.; Guo, H., Continuous-variable measurement-device-independent quantum key distribution, Phys. Rev. A, 89, Article 052301 pp. (2014)
[28] Zhang, Y. C.; Li, Z.; Yu, S.; Gu, W.; Peng, X.; Guo, H., Continuous-variable measurement-device-independent quantum key distribution using squeezed states, Phys. Rev. A, 90, Article 052325 pp. (2014)
[29] Ottaviani, C.; Spedalieri, G.; Braunstein, S. L.; Pirandola, S., Continuous-variable quantum cryptography with an untrusted relay: detailed security analysis of the symmetric configuration, Phys. Rev. A, 91, Article 022320 pp. (2015)
[30] Zhang, X.; Zhang, Y.; Zhao, Y.; Wang, X.; Yu, S.; Guo, H., Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution, Phys. Rev. A, 96, Article 042334 pp. (2017)
[31] Papanastasiou, P.; Ottaviani, C.; Pirandola, S., Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables, Phys. Rev. A, 96, Article 042332 pp. (2017)
[32] Lupo, C.; Ottaviani, C.; Papanastasiou, P.; Pirandola, S., Continuous-variable measurement-device-independent quantum key distribution: composable security against coherent attacks, Phys. Rev. A, 97, Article 052327 pp. (2018)
[33] Lupo, C.; Ottaviani, C.; Papanastasiou, P.; Pirandola, S., Parameter estimation with almost no public communication for continuous-variable quantum key distribution, Phys. Rev. Lett., 120, Article 220505 pp. (2018)
[34] Chen, Z.; Zhang, Y.; Wang, G.; Li, Z.; Guo, H., Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks, Phys. Rev. A, 98, Article 012314 pp. (2018)
[35] Zhao, Y.; Zhang, Y.; Xu, B.; Yu, S.; Guo, H., Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction, Phys. Rev. A, 97, Article 042328 pp. (2018)
[36] Ma, H.-X.; Huang, P.; Bai, D.-Y.; Wang, S.-Y.; Bao, W.-S.; Zeng, G.-H., Continuous-variable measurement-device-independent quantum key distribution with photon subtraction, Phys. Rev. A, 97, Article 042329 pp. (2018)
[37] Wang, P.; Wang, X.; Li, Y., Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers, Phys. Rev. A, 99, Article 042309 pp. (2019)
[38] Liu, W.; Wang, X.; Wang, N.; Du, S.; Li, Y., Imperfect state preparation in continuous-variable quantum key distribution, Phys. Rev. A, 96, Article 042312 pp. (2017)
[39] García-Patrón, R.; Cerf, N. J., Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution, Phys. Rev. Lett., 97, Article 190503 pp. (2006)
[40] Vasile, R.; Olivares, S.; Paris, M. G.A.; Maniscalco, S., Continuous variable quantum key distribution in non-Markovian channels, Phys. Rev. A, 83, Article 042321 pp. (2011)
[41] Pirandola, S., Entanglement reactivation in separable environments, New J. Phys., 15, Article 113046 pp. (2013) · Zbl 1451.81102
[42] Holevo, A. S., Bounds for the quantity of information transmitted by a quantum communication channel, Probl. Inf. Transm., 9, 177 (1973)
[43] Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L., Fundamental limits of repeaterless quantum communications, Nat. Commun., 8, Article 15043 pp. (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.