×

Numerical and experimental investigations on the band-gap characteristics of metamaterial multi-span beams. (English) Zbl 1487.74074

Summary: A novel metamaterial multi-span beam with periodic simple supports and local resonators is designed and investigated. The frequency responses of the proposed metamaterial multi-span beam are computed by the spectral element method (SEM). The accuracy and feasibility of the SEM are verified by the finite element method (FEM) and the vibration experiments. The results show that the metamaterial multi-span beam could generate both the local resonance band-gaps in the low-frequency ranges and the Bragg band-gaps in the medium and high frequency regions. By adjusting the natural frequencies of the local resonators, the thickness of the base beam and the length of the unit-cell, the local resonance and the Bragg band-gaps can be controlled, respectively. The coupling effects of these two kinds of band-gaps are investigated by the parametrical design, which broadens the band-gaps and consequently improves the vibration reduction performance.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
74E30 Composite and mixture properties
74S25 Spectral and related methods applied to problems in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
Full Text: DOI

References:

[1] Pennec, Y.; Djafari-Rouhani, B.; Larabi, H.; Vasseur, J. O., Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate, Phys. Rev. B, 78, 10, Article 104105 pp. (2008)
[2] Fan, L.; Ge, H.; Zhang, S. Y.; Gao, H. F.; Liu, Y. H.; Zhang, H., Nonlinear acoustic fields in acoustic metamaterial based on a cylindrical pipe with periodically arranged side holes, J. Acoust. Soc. Am., 133, 6, 3846-3852 (2013)
[3] Li, Z. W.; Wang, C.; Wang, X. D., Modelling of elastic metamaterials with negative mass and modulus based on translational resonance, Int. J. Solids Struct., 162, 271-284 (2019)
[4] Lu, M. H.; Feng, L.; Chen, Y. F., Phononic crystals and acoustic metamaterials, Mater. Today, 12, 12, 34-42 (2009)
[5] Beli, D.; Arruda, J. R.F.; Ruzzene, M., Wave propagation in elastic metamaterial beams and plates with interconnected resonators, Int. J. Solids Struct., 139-140 (2018), 105-120
[6] Feng, R. X.; Liu, K. X., Tuning the band-gap of phononic crystals with an initial stress, Physica B, Condens. Matter, 407, 12, 2032-2036 (2012)
[7] Wu, M. L.; Wu, L. Y.; Yang, P. W.; Chen, L. W., Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials, Smart Mater. Struct., 18, 11, Article 115013 pp. (2009)
[8] Zhao, H. J.; Guo, H. W.; Gao, M. X.; Liu, R. Q.; Deng, Z. Q., Vibration band gaps in double-vibrator pillared phononic crystal plate, J. Appl. Phys., 119, 1, Article 014903 pp. (2016)
[9] Oudich, M.; Li, Y.; Assouar, B. M.; Hou, Z. L., A sonic band gap based on the locally resonant phononic plates with stubs, New J. Phys., 12, 8, Article 083049 pp. (2010)
[10] Chen, Y.; Wang, L., Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps, Appl. Phys. Lett., 105, 19, Article 191907 pp. (2014)
[11] Dong, Y. K.; Yao, H.; Du, J.; Zhao, J. B.; Jiang, J. L., Research on local resonance and Bragg scattering coexistence in phononic crystal, Mod. Phys. Lett. B, 31, 11, Article 1750127 pp. (2017)
[12] Sharma, B.; Sun, C. T., Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators, J. Sound Vib., 364, 133-146 (2016)
[13] Zhang, Y. F.; Yu, D. L.; Wen, J. H., Study on the band gaps of phononic crystal pipes with alternating materials in the radial and axial directions, Extreme Mech. Lett., 12, 2-6 (2017)
[14] Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y. Y.; Yang, Z.; Chan, C. T.; Sheng, P., Locally resonant sonic materials, Science, 289, 5485, 1734-1736 (2000)
[15] Yu, D. L.; Liu, Y. Z.; Wang, G.; Zhao, H. G., Flexural vibration band gaps in Timoshenko beams with locally resonant structures, J. Appl. Phys., 100, 12, Article 124901 pp. (2006)
[16] Raghavan, L.; Phani, A. S., Local resonance band gaps in periodic media: theory and experiment, J. Acoust. Soc. Am., 134, 3, 1950-1959 (2013)
[17] Liu, Z. B.; Rumpler, R.; Feng, L. P., Broadband locally resonant metamaterial sandwich plate for improved noise insulation in the coincidence region, Compos. Struct., 200, 165-172 (2018)
[18] Chen, L.; Bian, Y. S.; Zhou, R., Large band gaps of petal-shaped acoustic metamaterials based on local resonance, J. Vib. Eng. Technol., 7, 1, 53-61 (2019)
[19] Bilal, O. R.; Hussein, M. I., Trampoline metamaterial: local resonance enhancement by springboards, Appl. Phys. Lett., 103, 11, 2022-2025 (2013)
[20] Liu, L.; Hussein, m. I., Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance, J. Appl. Mech., 79, 1, Article 011003 pp. (2012)
[21] Wang, Y. Z.; Wang, Y. S., Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain, Wave Motion, 78, 1-8 (2018) · Zbl 1469.74075
[22] Ning, L.; Wang, Y. Z.; Wang, Y. S., Active control of elastic metamaterials consisting of symmetric double Helmholtz resonator cavities, Int. J. Mech. Sci., 153-154 (2019), 287-298
[23] Li, Z. N.; Wang, Y. Z.; Wang, Y. S., Nonreciprocal phenomenon in nonlinear elastic wave metamaterials with continuous properties, Int. J. Solids Struct., 150, 125-134 (2018)
[24] Li, Z. N.; Yuan, B.; Wang, Y. Z.; Shui, G. S.; Zhang, C.; Wang, Y. S., Diode behavior and nonreciprocal transmission in nonlinear elastic wave metamaterial, Mech. Mater., 133, 85-101 (2019)
[25] Xiao, Y.; Wen, J.; Wen, X., Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators, J. Sound Vib., 331, 25, 5408-5423 (2012)
[26] Shu, F. F.; Liu, Y. S.; Wu, J. F.; Wu, Y. H., Band gap in tubular pillar phononic crystal plate, Ultrasonics, 71, 172-176 (2016)
[27] Su, L.; Hoon, A. C.; Woo, L. J., Vibro-acoustic metamaterial for longitudinal vibration suppression in a low frequency range, Int. J. Mech. Sci., 144, 223-234 (2018)
[28] Bahrami, S.; Shirmohammadi, F.; Saadatpour, M. M., Vibration analysis of thin shallow shells using spectral element method, Appl. Math. Model., 44, 470-480 (2017) · Zbl 1443.74023
[29] Shirmohammadi, F.; Bahrami, S., Dynamic response of circular and annular circular plates using spectral element method, Appl. Math. Model., 53, 156-166 (2018) · Zbl 1480.74207
[30] Wu, Z. J.; Li, F. M.; Zhang, C., Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method, J. Sound Vib., 421, 246-260 (2018)
[31] Wu, Z. J.; Li, F. M.; Zhang, C., Vibration properties of piezoelectric square lattice structures, Mech. Res. Commun., 62, 123-131 (2014)
[32] Wu, Z. J.; Li, F. M.; Zhang, C., Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method, J. Sound Vib., 341, 162-173 (2015)
[33] Abad, F.; Rouzegar, J., An exact spectral element method for free vibration analysis of FG plate integrated with piezoelectric layers, Compos. Struct., 180, 696-708 (2017)
[34] Krawczuk, M.; Palacz, M.; Ostachowicz, W., The dynamic analysis of a cracked Timoshenko beam by the spectral element method, J. Sound Vib., 264, 5, 1139-1153 (2003)
[35] Lee, U., Spectral Element Method in Structural Dynamics (2009), John Wiley & Sons: John Wiley & Sons Singapore · Zbl 1400.74116
[36] Cheng, D. X., Handbook of Mechanical Design (2015), Chemical Industry Press: Chemical Industry Press Beijing, [in Chinese]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.