×

Numerical simulation of charged fullerene spectrum. (English) Zbl 1469.92005

Summary: The mathematical model of the ground state electron spectrum of a charged fullerene is constructed on the basis of the potential of a charged sphere and the spherically symmetric potential of a neutral fullerene, derived in a single-electron self-consistent field model approach. The electron spectrum is defined as the solution of the spectral problem for the one-dimensional Schrödinger equation. For the numerical solution of the spectral problem, piecewise-linear finite elements are used. The computational algorithm was tested on the analytical solution of the problem of the spectrum of the hydrogen atom. For solution of matrix spectral problems, a free library for solving spectral problems of SLEPc is used. The results of calculations of the electron spectrum of a charged fullerene \(C_{60}\) are presented.

MSC:

92-10 Mathematical modeling or simulation for problems pertaining to biology
65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
82D80 Statistical mechanics of nanostructures and nanoparticles
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)

References:

[1] M.Y. Amusia, A.S. Baltenkov and B.G. Krakov. Photodetachment of negative C − 60 ions. Physics Letters A, 243(1-2):99-105, 1998. https://doi.org/10.1016/S0375-9601(98)00158-3. · doi:10.1016/S0375-9601(98)00158-3
[2] R.V. Arutyunyan and A.V. Osadchy. The systems of volume-localized electron quantum levels of charged fullerenes. Journal of Nanomaterials, 2018:7526869, 2018. https://doi.org/10.1155/2018/7526869. · doi:10.1155/2018/7526869
[3] R.V. Arutyunyan, P.N. Vabishchevich and Y.N. Obukhov. Existence of a sys-tem of discrete volume-localized quantum levels for charged fullerenes. Physical Review B, 98(10):155427, 2018. https://doi.org/10.1103/PhysRevB.98.155427. · doi:10.1103/PhysRevB.98.155427
[4] A.S. Baltenkov, S.T. Manson and A.Z. Msezane. Jellium model potentials for the C60 molecule and the photoionization of endohedral atoms, A@C60. Jour-nal of Physics B: Atomic, Molecular and Optical Physics, 48(18):185103, 2015. https://doi.org/10.1088/0953-4075/48/18/185103. · doi:10.1088/0953-4075/48/18/185103
[5] A.K. Belyaev, A.S. Tiukanov, A.I. Toropkin, V.K. Ivanov, R.G. Polozkov and A.V. Solov’yov. Photoabsorption of the fullerene C60 and its positive ions. Physica Scripta, 80(4):048121, 2009. https://doi.org/10.1088/0031-8949/80/04/048121. · doi:10.1088/0031-8949/80/04/048121
[6] V.R. Bhardwaj, P.B. Corkum and D.M. Rayner. Internal laser-induced dipole force at work in C60 molecule. Physical Review Letters, 91(20):203004, 2003. https://doi.org/10.1103/PhysRevLett.91.203004. · doi:10.1103/PhysRevLett.91.203004
[7] A. Brenac, F. Chandezon, H. Lebius, A. Pesnelle, S. Tomita and B.A. Huber. Multifragmentation of highly charged C60 ions: Charge states and fragment energies. Physica Scripta, 1999(T80B):195, 1999. https://doi.org/10.1238/Physica.Topical.080a00195. · doi:10.1238/Physica.Topical.080a00195
[8] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite El-ement Methods. Springer, New York, 2008. ISBN 9780387759333. · Zbl 1135.65042
[9] https://doi.org/10.1007/978-0-387-75934-0. · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[10] E. Campbell. Fullerene collision reactions. Kluwer Academic, Dordrecht London, 2003. ISBN 9781402025242.
[11] J. P. Connerade, V.K. Dolmatov, P.A. Lakshmi and Manson S.T. Electron struc-ture of endohedrally confined atoms: atomic hydrogen in an attractive shell. Journal of Physics B: Atomic, Molecular and Optical Physics, 32(10):L239-L245, 1999. https://doi.org/10.1088/0953-4075/32/10/101. · doi:10.1088/0953-4075/32/10/101
[12] J.P. Connerade, V.K. Dolmatov and Manson S.T. A unique situation for an endohedral metallofullerene. Journal of Physics B: Atomic, Molecular and Optical Physics, 32(14):L395-L403, 1999. https://doi.org/10.1088/0953-4075/32/14/108. · doi:10.1088/0953-4075/32/14/108
[13] S. Díaz-Tendero, M. Alcamí and F. Martín. Structure and electronic properties of highly charged C60 and C58 fullerenes. The Journal of Chemical Physics, 123(18):184306, 2005. https://doi.org/10.1063/1.2104467. · doi:10.1063/1.2104467
[14] Z. Felfli and A.Z. Msezane. Simple method for determining binding ener-gies of fullerene negative ions. European Physical Journal B, 72:78, 2018. https://doi.org/10.1140/epjd/e2018-80420-9. · doi:10.1140/epjd/e2018-80420-9
[15] V. Hernandez, J.E. Roman and V. Vidal. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Soft-ware (TOMS), 31(3):351-362, 2005. https://doi.org/10.1145/1089014.1089019. · Zbl 1136.65315 · doi:10.1145/1089014.1089019
[16] V.K. Ivanov, G.Y. Kashenock, R.G. Polozkov and A.V. Solov’yov. Photoioniza-tion cross sections of the fullerenes C20 and C60 calculated in a simple spher-ical model. Journal of Physics B: Atomic, Molecular and Optical Physics, 34(21):L669-L677, 2001. https://doi.org/10.1088/0953-4075/34/21/101. · doi:10.1088/0953-4075/34/21/101
[17] W. Jaskólski. Confined many-electron systems. Physics Reports, 271(1):1-66, 1996. https://doi.org/10.1016/0370-1573(95)00070-4. · doi:10.1016/0370-1573(95)00070-4
[18] J. Jensen, H. Zettergren, H.T. Schmidt, H. Cederquist, S. Tomita, S.B. Nielsen, J. Rangama, P. Hvelplund, B. Manil and B. A. Huber. Ionization of C70 and C60 molecules by slow highly charged ions: A comparison. Physical Review A, 69:053203, 2004. https://doi.org/10.1103/PhysRevA.69.053203. · doi:10.1103/PhysRevA.69.053203
[19] W. Krätschmer, L.D. Lamb, K. Fostiropoulos and D. R. Huffman. Solid C60: a new form of carbon. Nature, 347(6291):354-358, 1990. https://doi.org/10.1038/347354a0. · doi:10.1038/347354a0
[20] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smal-ley. C60: Buckminsterfullerene. Nature, 318(6042):162-163, 1985. https://doi.org/10.1038/318162a0. · doi:10.1038/318162a0
[21] L.D. Landau and E.M. Lifshitz. Quantum Mechanics : Non-Relativistic Theory. Elsevier Science, Burlington, 1977. ISBN 9781483149127. · Zbl 0178.57901
[22] F. Langa. Fullerenes: principles and applications. Royal Society of Chemistry, Cambridge, U.K, 2011. ISBN 9781849732956.
[23] V. Ledoux and M. Van Daele. Matslise 2.0: A Matlab toolbox for Sturm-Liouville computations. ACM Transactions on Mathematical Software (TOMS), 42(4):29:1-29:18, June 2016. https://doi.org/10.1145/2839299. · Zbl 1369.65094 · doi:10.1145/2839299
[24] A. Logg, K. A. Mardal and G. Wells. Automated Solution of Differential Equa-tions by the Finite Element Method: The FEniCS Book. Springer, Berlin New York, 2012. ISBN 9783642230981. https://doi.org/10.1007/978-3-642-23099-8. · Zbl 1247.65105 · doi:10.1007/978-3-642-23099-8
[25] L.L. Lohr and M. Blinder. Electron photodetachment from a Dirac bubble po-tential. a model for the fullerene negative ion CC − 60 . Chemical Physics Letters, 198(1-2):100-108, 1992. https://doi.org/10.1016/0009-2614(92)90055-R. · doi:10.1016/0009-2614(92)90055-R
[26] M.E. Madjet, H.S. Chakraborty, J.M. Rost and S.T. Manson. Photoion-ization of C60: a model study. Journal of Physics B: Atomic, Molecu-lar and Optical Physics, 41(10):105101, 2008. https://doi.org/10.1088/0953-4075/41/10/105101. · doi:10.1088/0953-4075/41/10/105101
[27] R.G. Polozkov, V.K. Ivanov and A.V. Solov’yov. Photoionization of the fullerene ion C + 60 . Journal of Physics B: Atomic, Molecular and Optical Physics, 38(24):4341-4348, 2005. https://doi.org/10.1088/0953 · doi:10.1088/0953-4075/38/24/001
[28] J. Pryce. Numerical solution of Sturm-Liouville problems. Clarendon Press, Oxford England New York, 1993. ISBN 0198534159. · Zbl 0795.65053
[29] J.D. Pryce. A test package for Sturm-Liouville solvers. ACM Transactions on Mathematical Software, 25(1):21-57, 1999. https://doi.org/10.1145/305658.287651. · Zbl 0962.65063 · doi:10.1145/305658.287651
[30] M.J. Puska and R.M. Nieminen. Photoabsorption of atoms inside C60. Physical Review A, 47:1181, 1993. https://doi.org/10.1103/PhysRevA.47.1181. · doi:10.1103/PhysRevA.47.1181
[31] A. Rüdel, R. Hentges, U. Becker, H.S. Chakraborty, M.E. Madjet and J.M. Rost. Imaging delocalized electron clouds: Photoionization of C60 in Fourier reciprocal space. Physical Review Letters, 89:125503, 2002. https://doi.org/0.1103/PhysRevLett.89.125503.
[32] Y. Saad. Numerical methods for large eigenvalue problems. Society for In-dustrial and Applied Mathematics, Philadelphia, 2011. ISBN 9781611970722. https://doi.org/10.1137/1.9781611970739. · Zbl 1242.65068 · doi:10.1137/1.9781611970739
[33] R. Sahnoun, K. Nakai, Y. Sato, H. Kono, Y. Fujimura and M. Tanaka. Theo-retical investigation of the stability of highly charged C60 molecules produced with intense near-infrared laser pulses. The Journal of Chemical Physics, 125(18):184306, 2006. https://doi.org/10.1063/1.2371109. · doi:10.1063/1.2371109
[34] S. Saito, A. Oshiyama and Miyamoto Y. Electronic structures of fullerenes and fullerides. Computational Approaches in Condensed-Matter Physics, pp. 22-26, 1992. https://doi.org/10.1007/978-3-642-84821-6 4. · doi:10.1007/978-3-642-84821-6_4
[35] G. Sánchez, S. Díaz-Tendero, M. Alcamí and F. Martín. Size dependence of ionization potentials and dissociation energies for neutral and singly-charged Cn fullerenes (n = 40 − 70). Chemical Physics Letters, 416(1-3):14-17, 2005. https://doi.org/10.1016/j.cplett.2005.09.033. · doi:10.1016/j.cplett.2005.09.033
[36] K. Sattler. Handbook of nanophysics. CRC Press, Boca Raton, 2011. ISBN 9781420075540.
[37] G. Schrange-Kashenock. 4d → 4f resonance in photoabsorption of cerium ion Ce 3+ and endohedral cerium in fullerene complex Ce@C + 82 . Journal of Physics B: Atomic, Molecular and Optical Physics, 49(19):185002, 2016. https://doi.org/10.1088/0953-4075/49/18/185002. · doi:10.1088/0953-4075/49/18/185002
[38] G.W. Stewart. A Krylov-Schur algorithm for large eigenproblems. · Zbl 1003.65045
[39] SIAM Journal on Matrix Analysis and Applications, 23(3):601-614, 2001. https://doi.org/10.1137/S0895479800371529. · Zbl 1003.65045 · doi:10.1137/S0895479800371529
[40] N. Troullier and J.L. Martins. Structural and electronic prop-erties of C60. Physical Review B, 46(3):1754-1765, 1992. https://doi.org/10.1103/PhysRevB.46.1754. · doi:10.1103/PhysRevB.46.1754
[41] A.V. Verkhovtsev, A.V. Korol and Solov’yov A.V. Quantum and classical fea-tures of the photoionization spectrum of C60. Physical Review A, 88:043201, 2013. https://doi.org/10.1103/PhysRevA.88.043201. · doi:10.1103/PhysRevA.88.043201
[42] Y.B. Xu, M.Q. Tan and U. Becker. Oscillations in the photoion-ization cross section of C60. Physical Review Letters, 76:3538, 1996. https://doi.org/10.1103/PhysRevLett.76.3538. · doi:10.1103/PhysRevLett.76.3538
[43] K. Yabana and G.F. Bertsch. Electronic structure of C60 in a spherical basis. Physica Scripta, 48(5):633-637, 1993. https://doi.org/10.1088/0031-8949/48/5/022. · doi:10.1088/0031-8949/48/5/022
[44] H. Zettergren, J. Jensen, H.T. Schmidt and H. Cederquist. Electrostatic model calculations of fission barriers for fullerene ions. European Physical Jour-nal D: Atomic, Molecular, Optical and Plasma Physics, 29(1):63-68, 2004. https://doi.org/10.1140/epjd/e2004-00006-6. · doi:10.1140/epjd/e2004-00006-6
[45] H. Zettergren, G. Sánchez, S. Díaz-Tendero, M. Alcamí and F. Martín. Theo-retical study of the stability of multiply charged C70 fullerenes. The Journal of Chemical Physics, 127(10):104308, 2007. https://doi.org/10.1063/1.2768361. · doi:10.1063/1.2768361
[46] A. Zettl. Sturm-Liouville theory. American Mathematical Society, Providence, R.I, 2005. ISBN 9780821839058. · Zbl 1103.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.