×

Decoding of cyclic codes over the ring \(F_2+uF_2+u^2F_2\). (English) Zbl 1476.94054

Summary: P. Udaya and A. Bonnecaze [IEEE Trans. Inf. Theory 45, No. 6, 2148–2157 (1999; Zbl 0959.94028)] presented a decoding algorithm for cyclic codes of odd length over the ring \(F_2+u F_2\). In this study, a simpler approach for decoding cyclic codes with odd length over this ring is proposed. The structure of cyclic codes of odd length over the ring \(R=F_2+uF_2+u^2F_2\), where \(u^3=0,\) is given. A Gray map which is both an isometry and a weight-preserving map from \(R^n\) to \(F_2{}^{4n}\) is defined and with the use of proposed Gray map, a BCH-like bound for the Lee distance of codes over \(R\) is given. Finally, a decoding algorithm is suggested for cyclic codes over \(R\).

MSC:

94B35 Decoding
94B15 Cyclic codes

Citations:

Zbl 0959.94028
Full Text: DOI

References:

[1] Byrne, E.; Greferath, M.; Pernas, J.; Zumbrägel, J., Algebraic decoding of negacyclic codes over \(Z_4\), Des Codes Cryptogr, 66, 3-16 (2012) · Zbl 1290.94165 · doi:10.1007/s10623-012-9632-3
[2] Calderbank, AR; Sloane, NJA, Modular and p-adic cyclic codes, Des Codes Cryptogr, 6, 21-35 (1995) · Zbl 0848.94020 · doi:10.1007/BF01390768
[3] Dinh, HQ; López-Permouth, SR, Cyclic and negacyclic codes over finite chain rings, IEEE Trans Inf Theory, 50, 1728-1744 (2004) · Zbl 1243.94043 · doi:10.1109/TIT.2004.831789
[4] Greferath, M.; Schmidt, ES, Gray isometries for finite chain rings and a nonlinear ternary \((36, 3^12, 15)\) code, IEEE Trans Inf Theory, 45, 7, 2522-2524 (1999) · Zbl 0960.94035 · doi:10.1109/18.796395
[5] Hammons, AR; Kumar, PV; Calderbank, AR; Sloane, NJA; Solé, P., The \(Z_4\)-linearity of kerdock, preparata, goethals and related codes, IEEE Trans Inf Theory, 40, 301-319 (1994) · Zbl 0811.94039 · doi:10.1109/18.312154
[6] Huffman, WC; Pless, V., Fundamentals of error-correcting codes (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1191.94107 · doi:10.1017/CBO9780511807077
[7] Interlando, JC; Palazzo, R.; Elia, M., On the decoding of Reed-Solomon and BCH codes over integer residue ring, IEEE Trans Inf Theory, 43, 1012-1021 (1997) · Zbl 0926.94035 · doi:10.1109/18.568713
[8] Norton, GH; Salagean, A., On the Hamming distance of linear codes over a finite chain ring, IEEE Trans Inf Theory, 46, 1060-1067 (2000) · Zbl 0963.94043 · doi:10.1109/18.841186
[9] Qian J, Zhang L, Yin Z (2006) Type II code over \(F_2+uF_2+u^2F_2\). In: Proceedings of 2006 IEEE inf theory workshop (ITW’06)
[10] Udaya, P.; Siddiqi, MU, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans Inf Theory, 44, 4, 1492-1503 (1998) · Zbl 0941.94015 · doi:10.1109/18.681324
[11] Udaya, P.; Bonnecaze, A., Decoding of cyclic codes over \(F_2 + uF_2\), IEEE Trans Inf Theory, 45, 2148-2157 (1999) · Zbl 0959.94028 · doi:10.1109/18.782165
[12] Wood, JA, The structure of linear codes of constant length, Trans Am Math Soc, 354, 1007-1026 (2001) · Zbl 1026.94018 · doi:10.1090/S0002-9947-01-02905-1
[13] Yin X, Ma W (2011) Gray map and quantum codes over the ring \(F_2+uF_2+u^2F_2\). In: 2011 international joint conference of IEEE
[14] Zaragoza, RHM, The art of error correcting coding (2006), Hoboken: Wiley, Hoboken · doi:10.1002/0470035706
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.