×

Almost global problems in the LOCAL model. (English) Zbl 1522.68729

Summary: The landscape of the distributed time complexity is nowadays well-understood for subpolynomial complexities. When we look at deterministic algorithms in the \(\mathsf{LOCAL}\) model and locally checkable problems (\(\mathsf{LCL}\)s) in bounded-degree graphs, the following picture emerges:
There are lots of problems with time complexities of \(\varTheta (\log^* n)\) or \(\varTheta (\log n)\).
It is not possible to have a problem with complexity between \(\omega (\log^* n)\) and \(o(\log n)\).
In general graphs, we can construct \(\mathsf{LCL}\) problems with infinitely many complexities between \(\omega (\log n)\) and \(n^{o(1)} \).
In trees, problems with such complexities do not exist.
However, the high end of the complexity spectrum was left open by prior work. In general graphs there are \(\mathsf{LCL}\) problems with complexities of the form \(\varTheta (n^\alpha )\) for any rational \(0 < \alpha \le 1/2\), while for trees only complexities of the form \(\varTheta (n^{1/k})\) are known. No \(\mathsf{LCL}\) problem with complexity between \(\omega (\sqrt{n})\) and \(o(n)\) is known, and neither are there results that would show that such problems do not exist. We show that:
In general graphs, we can construct \(\mathsf{LCL}\) problems with infinitely many complexities between \(\omega (\sqrt{n})\) and \(o(n)\).
In trees, problems with such complexities do not exist.
Put otherwise, we show that any \(\mathsf{LCL}\) with a complexity \(o(n)\) can be solved in time \(O(\sqrt{n})\) in trees, while the same is not true in general graphs.

MSC:

68W15 Distributed algorithms
68Q10 Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.)
68Q25 Analysis of algorithms and problem complexity
68R10 Graph theory (including graph drawing) in computer science

References:

[1] Balliu, A., Brandt, S., Olivetti, D., Suomela, J.: Almost global problems in the LOCAL model. In: Proceedings 32nd International Symposium on Distributed Computing (DISC 2018), Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018). doi:10.4230/LIPIcs.DISC.2018.9 · Zbl 07323203
[2] Balliu, A., Hirvonen, J., Korhonen, J.H., Lempiäinen, T., Olivetti, D., Suomela, J.: New classes of distributed time complexity. In: Proceedings 50th ACM Symposium on Theory of Computing (STOC 2018), pp. 1307-1318. ACM Press (2018). doi:10.1145/3188745.3188860 · Zbl 1427.68094
[3] Barenboim, L., Deterministic \(( \varDelta +1)\)-coloring in sublinear (in \(\varDelta )\) time in static, dynamic, and faulty networks, J. ACM, 63, 5, 1-22 (2016) · Zbl 1426.68290 · doi:10.1145/2979675
[4] Barenboim, L.; Elkin, M.; Kuhn, F., Distributed \(( \varDelta +1)\)-coloring in linear (in \(\varDelta )\) time, SIAM J. Comput., 43, 1, 72-95 (2014) · Zbl 1311.68185 · doi:10.1137/12088848X
[5] Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T., Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed Lovász local lemma. In: Proceedings 48th ACM Symposium on Theory of Computing (STOC 2016), pp. 479-488. ACM Press (2016). doi:10.1145/2897518.2897570 · Zbl 1375.68191
[6] Brandt, S., Hirvonen, J., Korhonen, J.H., Lempiäinen, T., Östergård, P.R.J., Purcell, C., Rybicki, J., Suomela, J., Uznański, P.: LCL problems on grids. In: Proceedings 36th ACM Symposium on Principles of Distributed Computing (PODC 2017), pp. 101-110. ACM Press (2017). doi:10.1145/3087801.3087833 · Zbl 1380.68218
[7] Chang, YJ; He, Q.; Li, W.; Pettie, S.; Uitto, J., Distributed edge coloring and a special case of the constructive Lovász local lemma, ACM Trans. Algorithms, 16, 1, 8:1-8:51 (2020) · Zbl 1454.68167 · doi:10.1145/3365004
[8] Chang, YJ; Kopelowitz, T.; Pettie, S., An exponential separation between randomized and deterministic complexity in the LOCAL model, SIAM J. Comput., 48, 1, 122-143 (2019) · Zbl 1404.05203 · doi:10.1137/17M1117537
[9] Chang, YJ; Pettie, S., A time hierarchy theorem for the LOCAL model, SIAM J. Comput., 48, 1, 33-69 (2019) · Zbl 1405.68116 · doi:10.1137/17M1157957
[10] Cole, R.; Vishkin, U., Deterministic coin tossing with applications to optimal parallel list ranking, Inf. Control, 70, 1, 32-53 (1986) · Zbl 0612.68044 · doi:10.1016/S0019-9958(86)80023-7
[11] Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: Proceedings 57th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2016), pp. 625-634. IEEE (2016). doi:10.1109/FOCS.2016.73
[12] Ghaffari, M., Harris, D.G., Kuhn, F.: On derandomizing local distributed algorithms. In: Proceedings 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2018), pp. 662-673. IEEE (2018). doi:10.1109/FOCS.2018.00069
[13] Ghaffari, M., Su, H.H.: Distributed Degree Splitting, Edge Coloring, and Orientations. In: Proceedings 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 2505-2523. Society for Industrial and Applied Mathematics (2017). doi:10.1137/1.9781611974782.166 · Zbl 1410.68297
[14] Göös, M.; Suomela, J., Locally checkable proofs in distributed computing, Theory Comput., 12, 1-33 (2016) · Zbl 1401.68085 · doi:10.4086/toc.2016.v012a019
[15] Hartmanis, J.; Stearns, RE, On the computational complexity of algorithms, Trans. Am. Math. Soc., 117, 117, 285-285 (1965) · Zbl 0131.15404 · doi:10.1090/S0002-9947-1965-0170805-7
[16] Hopcroft, JE; Ullman, JD, Introduction to Automata Theory, Languages and Computation (1979), Boston: Addison-Wesley, Boston · Zbl 0426.68001
[17] Linial, N., Locality in distributed graph algorithms, SIAM J. Comput., 21, 1, 193-201 (1992) · Zbl 0787.05058 · doi:10.1137/0221015
[18] Naor, M.; Stockmeyer, L., What can be computed locally?, SIAM J. Comput., 24, 6, 1259-1277 (1995) · Zbl 0845.68006 · doi:10.1137/S0097539793254571
[19] Panconesi, A.; Rizzi, R., Some simple distributed algorithms for sparse networks, Distributed Comput., 14, 2, 97-100 (2001) · Zbl 1448.68474 · doi:10.1007/PL00008932
[20] Panconesi, A.; Srinivasan, A., The local nature of \(\varDelta \)-coloring and its algorithmic applications, Combinatorica, 15, 2, 255-280 (1995) · Zbl 0837.68043 · doi:10.1007/BF01200759
[21] Peleg, D., Distributed Computing: A Locality-Sensitive Approach (2000), Philadelphia: Society for Industrial and Applied Mathematics, Philadelphia · Zbl 0959.68042 · doi:10.1137/1.9780898719772
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.