×

Asymptomatic transmission shifts epidemic dynamics. (English) Zbl 1471.92329

Summary: Asymptomatic transmission of infectious diseases has been recognized recently in several epidemics or pandemics. There is a great need to incorporate asymptomatic transmissions into traditional modeling of infectious diseases and to study how asymptomatic transmissions shift epidemic dynamics. In this work, we propose a compartmental model with asymptomatic transmissions for waterborne infectious diseases. We conduct a detailed analysis and numerical study with shigellosis data. Two parameters, the proportion \(p\) of asymptomatic infected individuals and the proportion \(k\) of asymptomatic infectious individuals who can asymptomatically transmit diseases, play major rules in the epidemic dynamics. The basic reproduction number \(\mathscr{R}_0\) is a decreasing function of parameter \(p\) when parameter \(k\) is smaller than a critical value while \(\mathscr{R}_0\) is an increasing function of \(p\) when \(k\) is greater than the critical value. \( \mathscr{R}_0\) is an increasing function of \(k\) for any value of \(p\). When \(\mathscr{R}_0\) passes through 1 as \(p\) or \(k\) varies, the dynamics of epidemics is shifted. If asymptomatic transmissions are not counted, \( \mathscr{R}_0\) will be underestimated while the final size may be overestimated or underestimated. Our study provides a theoretical example for investigating other asymptomatic transmissions and useful information for public health measurements in waterborne infectious diseases.

MSC:

92D30 Epidemiology

References:

[1] E. J. Nelson, J. B. Harris, J. G. Morris, S. B. Calderwood, A. Camilli, Cholera transmission: the host, pathogen and bacteriophage dynamic, Nat. Rev. Microbiol., 7 (2009), 693-702.
[2] C. Lopez, A. C. Dykes, D. D. Sinclair, S. P. Sinclair, J. M. Conn, R. W. Christie, et al., Wateborne giardiasis: a communitywide outbreak of disease and a high rate of asymptomatic infection, Am. J. Epidemiol., 112 (1980), 495-507.
[3] C. Okpalanwa, M. U. Anyanwu, M. A. Momoh, P. O. Nnamani, A. A. Attama, Generic salmonella in asymptomatic adult volunteers: occurrence, antibiogram, extended-spectrum \(β\)-lactamase production and carbapenem resistance, Notulae Scientia Biologicae, 11 (2019), 383-390.
[4] M, Water and sanitation in developing countries: including Health in the equation, Environ. Sci. Technol., 41, 17-24, 2007 · doi:10.1021/es072435t
[5] World Health Organization, Drinking-water, available from: https://www.who.int/news-room/factsheets/detail/drinking-water (Accessed 14 June 2019).
[6] W, A contribution to the mathematical theory of epidemics, P. Roy. Soc. A-Math. Phy., 115, 700-721, 1927 · JFM 53.0517.01
[7] V, A mathematical model for the 1973 cholera epidemic in the european mediterranean region, Revue d’épidémiologie et de Santé Publique, 27, 121-132, 1979
[8] C. T. Codeço, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 1 (2001), 1.
[9] J, Global stability for cholera epidemic models, Math. Biosci., 232, 31-41, 2011 · Zbl 1217.92068 · doi:10.1016/j.mbs.2011.04.001
[10] J, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, B. Math. Biol., 72, 1506-1533, 2010 · Zbl 1198.92030 · doi:10.1007/s11538-010-9507-6
[11] A, A delay mathematical model for the spread and control of water borne diseases, J. Theor. Biol., 301, 49-56, 2012 · Zbl 1397.92660 · doi:10.1016/j.jtbi.2012.02.006
[12] M. C. Eisenberg, Z. Shuai, J. H. Tien, P. Van den Driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013), 105-112. · Zbl 1309.92073
[13] Y, Global dynamics of a network epidemic model for waterborne diseases spread, Appl. Math. Comput., 237, 474-488, 2014 · Zbl 1334.92433
[14] T. Lääveri, Travellers’ diarrhoea: aetiological agents revisited, Dissertation, University of Helsinki, Helsinki, Finland, 2019.
[15] K, Assessment of the Incubation Period for Invasive Listeriosis, Clin. Infect. Dis., 63, 1487-1489, 2016 · doi:10.1093/cid/ciw569
[16] T. Chen, R. Ka-kit Leung, Z. Zhou, R. Liu, X. Zhang, L. Zhang, Investigation of key interventions for shigellosis outbreak control in China, PLoS One, 9 (2014), e95006.
[17] Q. Chen, J. Rui, Q. Hu, Y. Peng, H. Zhang, Z. Zhao, et al., Epidemiological characteristics and transmissibility of shigellosis in Hubei Province, 2005-2017, BMC Infect. Dis., 20 (2020), 272.
[18] T, A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infect. Dis. Poverty, 9, 1-8, 2020 · doi:10.1186/s40249-019-0617-6
[19] P, Reproduction numbers and sub-threshold endemic equilibria forcompartmental models of disease transmission, Math. Biosci., 180, 29-48, 2002 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[20] S, Remarks on a variant of Lyapunov-LaSalle theorem, Math. Biosci. Eng., 16, 1056-1066, 2019 · Zbl 1504.34203 · doi:10.3934/mbe.2019050
[21] J, Simple models for containment of a pandemic, J. R. Soc. Interface, 3, 453-457, 2006 · doi:10.1098/rsif.2006.0112
[22] National Bureau of Statistics, National data. Available from: http://data.stats.gov.cn/easyquery.htm?cn=C01 (Accessed 28 February 2020).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.