×

Complete integrability of diffeomorphisms and their local normal forms. (English) Zbl 1483.37033

Let \(\Phi\) be a local diffeomorphism on \(\mathbb{K}^n\) (where \(\mathbb{K}\) is \(\mathbb{R}\) or \(\mathbb{C}\)) having the origin as its isolated fixed point. This diffeomorphism is called integrable if there exists \(p\geq1\) pairwise commuting (germs of) diffeomorphisms \(\Phi_1=\Phi\), \(\Phi_2\), \(\dots\), \(\Phi_p\) with \(d\Phi_i(0)=A_i\) and \(q=n-p\) common first integrals \(F_1,\dots,F_q\) of those diffeomorphisms such that:
(i) The diffeomorphisms \(\Phi_i\) are independent, i.e., the matrices \(\{\ln A_i\}\), \(i=1,\dots,p\), are linearly independent over \(\mathbb{K}^n\) (for \(\mathbb{K}=\mathbb{C}\) independence is required for the families of all possible logarithms);
(ii) The first integrals \(F_j\) are functionally independent almost everywhere.
In this case we say that \((\Phi_1,\dots,\Phi_p,F_1,\dots,F_q)\) is a discrete completely integrable system of type \((p,q)\).
The authors consider the normal form problem of a commutative family of germs of analytic or smooth diffeomorphisms at a fixed point and give sufficient conditions which ensure that such an integrable family can be transformed into a normal form by an analytic or smooth transformation if the initial diffeomorphisms are respectively analytic or smooth.

MSC:

37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
37C79 Symmetries and invariants of dynamical systems
37J70 Completely integrable discrete dynamical systems

References:

[1] Arnold, VI, Mathematical Methods of Classical Mechanics (1989), New York: Springer, New York · Zbl 0692.70003 · doi:10.1007/978-1-4757-2063-1
[2] Arnold, VI, Geometrical Methods in the Theory of Ordinary Differential Equations (1988), New York: Springer, New York · Zbl 0648.34002 · doi:10.1007/978-3-662-11832-0
[3] Bogoyavlenskij, OI, Extended integrability and bi-Hamiltonian systems, Commun. Math. Phys., 196, 1, 19-51 (1998) · Zbl 0931.37028 · doi:10.1007/s002200050412
[4] Bambusi, D.; Stolovitch, L., Convergence to normal forms of integrable PDEs, Commun. Math. Phys. (2020) · Zbl 1445.37051 · doi:10.1007/s00220-019-03661-8
[5] Chaperon, M., Géométrie différentielle et singularités de systèmes dynamiques, Astérisque, 138-139, 444 (1986) · Zbl 0601.58002
[6] Chaperon, M., A forgotten theorem on \(\mathbb{Z}^k\times \mathbb{R}^m\)-action germs and related questions, Regul. Chaotic Dyn., 18, 6, 742-773 (2013) · Zbl 1417.37092 · doi:10.1134/S1560354713060130
[7] Culver, W., On the existence and uniqueness of the real logarithm of a matrix, Proc. Am. Math. Soc., 17, 5, 1146-1151 (1966) · Zbl 0143.26402 · doi:10.1090/S0002-9939-1966-0202740-6
[8] Eliasson, H.: Hamiltonian systems with Poisson commuting integrals. Ph.D. Thesis, University of Stockholm (1984)
[9] Eliasson, H., Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case, .arii Math. Helv., 65, 1, 4-35 (1990) · Zbl 0702.58024 · doi:10.1007/BF02566590
[10] Gantmakher, FR, The Theory of Matrices (1959), Providence: American Mathematical Society, Providence
[11] Gong, X.; Stolovitch, L., Real submanifolds of maximum complex tangent space at a CR singular point, I, Invent. Math., 206, 2, 293-377 (2016) · Zbl 1358.32018 · doi:10.1007/s00222-016-0654-8
[12] Ito, H., Convergence of Birkhoff normal forms for integrable systems, Comment. Math. Helv., 64, 1, 412-461 (1989) · Zbl 0686.58021 · doi:10.1007/BF02564686
[13] Ito, H., Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case, Math. Annal., 292, 1, 411-444 (1992) · Zbl 0735.58022 · doi:10.1007/BF01444629
[14] Jiang, K., Local normal forms of smooth weakly hyperbolic integrable systems, Regul. Chaotic Dyn., 21, 1, 18-23 (2016) · Zbl 1344.37060 · doi:10.1134/S1560354716010020
[15] Kappeler, T., and Pöschel, J.: KdV & KAM, volume 45 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (2003) · Zbl 1032.37001
[16] Kuksin, S.; Perelman, G., Vey theorem in infinite dimensions and its application to KdV, Discrete Contin. Dyn. Syst., 27, 1, 1-24 (2010) · Zbl 1193.37076 · doi:10.3934/dcds.2010.27.1
[17] Li, W.; Llibre, J.; Zhang, X., Extension of Floquet’s theory to nonlinear periodic differential systems and embedding diffeomorphisms in differential flows, Am. J. Math., 124, 1, 107-127 (2002) · Zbl 1048.37018 · doi:10.1353/ajm.2002.0004
[18] Liouville, J.: Note sur l’intégration des équations différentielles de la Dynamique, présentée au Bureau des Longitudes le 29 juin 1853. J. Math. Pures Appl. 137-138 (1855)
[19] Stolovitch, L., Singular complete integrability, Publ. Math. l’Inst. Hautes Études Sci., 91, 1, 133-210 (2000) · Zbl 0997.32024 · doi:10.1007/BF02698742
[20] Stolovitch, L., Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers, Ann. Math., 161, 2, 589-612 (2005) · Zbl 1080.32019 · doi:10.4007/annals.2005.161.589
[21] Stolovitch, L., Family of intersecting totally real manifolds of \((\mathbb{C}^n,0)\) and germs of holomorphic diffeomorphisms, Bull. Soc. Math. France, 143, 2, 247-263 (2015) · Zbl 1317.32011 · doi:10.24033/bsmf.2685
[22] Veselov, AP, Integrable mappings, Uspekhi Mat. Nauk, 46, 5-281, 3-45 (1991) · Zbl 0746.58033
[23] Veselov, AP, Growth and integrability in the dynamics of mappings, Commun. Math. Phys., 145, 1, 181-193 (1992) · Zbl 0751.58034 · doi:10.1007/BF02099285
[24] Vey, J., Sur certains systemes dynamiques séparables, Am. J. Math., 100, 3, 591-614 (1978) · Zbl 0384.58012 · doi:10.2307/2373841
[25] Walcher, S., On differential equations in normal form, Math. Ann., 291, 1, 293-314 (1991) · Zbl 0754.34032 · doi:10.1007/BF01445209
[26] Zhang, X., Analytic normalization of analytic integrable systems and the embedding flows, J. Differ. Equ., 244, 5, 1080-1092 (2008) · Zbl 1141.34004 · doi:10.1016/j.jde.2008.01.001
[27] Zhang, X., Analytic integrable systems: analytic normalization and embedding flows, J. Differ. Equ., 254, 7, 3000-3022 (2013) · Zbl 1335.34072 · doi:10.1016/j.jde.2013.01.016
[28] Ziglin, SL, Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics, I, Funct. Anal. Appl., 13, 3, 181-189 (1982) · Zbl 0524.58015 · doi:10.1007/BF01081586
[29] Zung, NT, Convergence versus integrability in Birkhoff normal form, Ann. Math., 161, 1, 141-156 (2005) · Zbl 1076.37045 · doi:10.4007/annals.2005.161.141
[30] Zung, NT, Non-degenerate singularities of integrable dynamical systems, Ergod. Theory Dyn. Syst., 35, 3, 994-1008 (2015) · Zbl 1369.37067 · doi:10.1017/etds.2013.65
[31] Zung, NT, A conceptual approach to the problem of action-angle variables, Arch. Ration. Mech. Anal., 229, 2, 789-833 (2018) · Zbl 1398.37053 · doi:10.1007/s00205-018-1227-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.