×

Local well posedness of the Euler-Korteweg equations on \({{\mathbb{T}}^d} \). (English) Zbl 1477.35141

Summary: We consider the Euler-Korteweg system with space periodic boundary conditions \(x \in{\mathbb{T}}^d\). We prove a local in time existence result of classical solutions for irrotational velocity fields requiring natural minimal regularity assumptions on the initial data.

MSC:

35Q31 Euler equations
35Q53 KdV equations (Korteweg-de Vries equations)
76B45 Capillarity (surface tension) for incompressible inviscid fluids
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Alazard, T.; Burq, N.; Zuily, C., On the water-wave equations with surface tension, Duke Math. J., 158, 3, 413-499 (2011) · Zbl 1258.35043 · doi:10.1215/00127094-1345653
[2] Alazard, T.; Métivier, G., Paralinearization of the Dirichlet-Neumann operator and regularity of three-dimensional water waves, Commun. PDEs, 34, 12, 1632-1704 (2009) · Zbl 1207.35082 · doi:10.1080/03605300903296736
[3] Alinhac, S., Gérard, P.: Pseudo-differential operators and the Nash-Moser theorem. AMS, Graduate Studies in Mathematics, vol. 82. ISBN-10: 0-8218-3454-1 (2007) · Zbl 1121.47033
[4] Antonelli, P.; Marcati, P., On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287, 2, 657-686 (2009) · Zbl 1177.82127 · doi:10.1007/s00220-008-0632-0
[5] Antonelli, P.; Marcati, P., The quantum hydrodynamics system in two space dimensions, Arch. Ration. Mech. Anal., 203, 499-527 (2012) · Zbl 1290.76165 · doi:10.1007/s00205-011-0454-7
[6] Antonelli, P., Marcati, P., Zheng, H.: genuine hydrodynamic analysis to the 1-D QHD system: existence, dispersion and stability. arXiv:1910.08104 (2019) · Zbl 1467.35253
[7] Audiard, C.; Haspot, B., Global well-posedness of the Euler-Korteweg system for small irrotational data, Commun. Math. Phys, 351, 1, 201-247 (2017) · Zbl 1369.35047 · doi:10.1007/s00220-017-2843-8
[8] Benzoni-Gavage, S.; Danchin, R.; Descombes, S., On the well-posedness for the Euler-Korteweg model in several space dimensions, Indiana Univ. Math. J., 56, 1499-1579 (2007) · Zbl 1125.76060 · doi:10.1512/iumj.2007.56.2974
[9] Berti, M., Bolle, P.: Quasi-periodic solutions of nonlinear wave equations on \({{\mathbb{T}}^d} \). In: European Research Monographs, European Research Monographs, 374 pages. ISBN 978-3-03719-211-5, 10.4171/211 (2020) · Zbl 1454.37003
[10] Berti, M., Maspero, A., Murgante, F.: Long time existence results for the Euler-Korteweg equations. In Preparation
[11] Berti, M., Delort, J.-M.: Almost global solutions of capillary-gravity water waves equations on the circle. In: UMI Lecture Notes, x+268 pages, ISBN 978-3-319-99486-4 (2018) · Zbl 1409.35002
[12] Berti, M.; Feola, R.; Franzoi, L., Quadratic life span of periodic gravity-capillary water waves, Water Waves (2020) · Zbl 1502.35103 · doi:10.1007/s42286-020-00036-8
[13] Bona, JL; Smith, R., The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond. Ser. A, 278, 1287, 555-601 (1975) · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[14] Bresch, D.; Desjardins, B.; Lin, C., On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equ., 28, 3-4, 843-868 (2003) · Zbl 1106.76436 · doi:10.1081/PDE-120020499
[15] Carles, R.; Danchin, R.; Saut, J-C, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25, 10, 2843-2873 (2012) · Zbl 1251.35142 · doi:10.1088/0951-7715/25/10/2843
[16] Deng, Y.; Ionescu, A.; Pausader, B.; Pusateri, F., Global solutions of the gravity-capillary water-wave system in three dimensions, Acta Math., 219, 2, 213-402 (2017) · Zbl 1397.35190 · doi:10.4310/ACTA.2017.v219.n2.a1
[17] Dunn, J.; Serrin, J., On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88, 2, 95-133 (1985) · Zbl 0582.73004 · doi:10.1007/BF00250907
[18] Feola, R., Iandoli, F.: Local well-posedness for quasi-linear NLS with large Cauchy data on the circle. Ann. l’Institut H. Poincaré (C) Anal. Non linéaire 36(1), 119-164 (2018) · Zbl 1430.35207
[19] Feola, R., Iandoli, F.: Local well-posedness for the quasi-linear Hamiltonian Schrödinger equation on tori. arXiv:2003.04815 · Zbl 1430.35207
[20] Kato, T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58, 181-205 (1975) · Zbl 0343.35056 · doi:10.1007/BF00280740
[21] Maspero, A.; Robert, D., On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms, J. Funct. Anal., 273, 2, 721-781 (2017) · Zbl 1366.35153 · doi:10.1016/j.jfa.2017.02.029
[22] Métivier, G.: Para-differential calculus and applications to the Cauchy problem for nonlinear systems. Edizioni della Normale, Pisa, xii+140 pp. ISBN: 978-88-7642-329-1 (2008) · Zbl 1156.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.