×

Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves. (English. Russian original) Zbl 1484.14033

Russ. Math. Surv. 76, No. 2, 195-259 (2021); translation from Usp. Mat. Nauk 76, No. 2, 3-70 (2021).
Summary: This paper is a survey of contemporary results and applications of the theory of homotopes. The notion of a well-tempered element of an associative algebra is introduced, and it is proved that the category of representations of the homotope constructed by a well-tempered element is the heart of a suitably glued t-structure. The Hochschild and global dimensions of homotopes are calculated in the case of well-tempered elements. The homotopes constructed from generalized Laplace operators in Poincaré groupoids of graphs are studied. It is shown that they are quotients of Temperley-Lieb algebras of general graphs. The perverse sheaves on a punctured disc and on a 2-dimensional sphere with a double point are identified with representations of suitable homotopes. Relations of the theory to orthogonal decompositions of the Lie algebras \(\operatorname{sl}(n,\mathbb{C})\) into a sum of Cartan subalgebras, to classifications of configurations of lines, to mutually unbiased bases, to quantum protocols, and to generalized Hadamard matrices are discussed.

MSC:

14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
16W99 Associative rings and algebras with additional structure
17B05 Structure theory for Lie algebras and superalgebras
31C20 Discrete potential theory
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
14-02 Research exposition (monographs, survey articles) pertaining to algebraic geometry

References:

[1] Beilinson, A. A., How to glue perverse sheaves, K-theory, arithmetic and geometry, 1289, 42-51 (1987) · Zbl 0651.14009 · doi:10.1007/BFb0078366
[2] Beilinson, A. A.; Bernstein, J.; Deligne, P., Faisceaux pervers, Analysis and topology on singular spaces, 100, 5-171 (1982) · Zbl 0536.14011
[3] Bennett, C. H.; Brassard, G., Quantum cryptography: Public key distribution and coin tossing, Proceedings of international conference on computers systems and signal processing, 175-179 (1984)
[4] Bezrukavnikov, R.; Kapranov, M., Microlocal sheaves and quiver varieties, Ann. Fac. Sci. Toulouse Math. (6), 25, 2-3, 473-516 (2016) · Zbl 1370.14026 · doi:10.5802/afst.1502
[5] Bondal, A. I., Representation of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat., 53, 1, 25-44 (1989) · Zbl 0692.18002 · doi:10.1070/IM1990v034n01ABEH000583
[6] Bondal, A. I.; Kapranov, M. M., Enhanced triangulated categories, Mat. Sb., 181, 5, 669-683 (1990) · Zbl 0719.18005 · doi:10.1070/SM1991v070n01ABEH001253
[7] Bondal, A.; Kapranov, M.; Schechtman, V., Perverse schobers and birational geometry, Selecta Math. (N. S.), 24, 1, 85-143 (2018) · Zbl 1436.14037 · doi:10.1007/s00029-018-0395-1
[8] Bondal, A. I.; Larsen, M.; Lunts, V. A., Grothendieck ring of pretriangulated categories, Int. Math. Res. Not. IMRN, 2004, 29, 1461-1495 (2004) · Zbl 1079.18008 · doi:10.1155/S1073792804140385
[9] Bondal, A.; Logvinenko, T., Perverse schobers and orbifolds
[10] Bondal, A.; Zhdanovskiy, I., Coherence of relatively quasi-free algebras, Eur. J. Math., 1, 4, 695-703 (2015) · Zbl 1333.18020 · doi:10.1007/s40879-015-0081-1
[11] Bondal, A.; Zhdanovskiy, I., Symplectic geometry of unbiasedness and critical points of a potential, Primitive forms and related subjects - Kavli IPMU 2014, 83, 1-18 (2019) · Zbl 1453.53074 · doi:10.2969/aspm/08310001
[12] Bondal, A.; Zhdanovskiy, I., Orthogonal pairs and mutually unbiased bases, J. Math. Sci. (N. Y.), 437, 1, 35-61 (2015) · Zbl 1342.81063 · doi:10.1007/s10958-016-2885-z
[13] Boykin, P. O.; Sitharam, M.; Tiep, P. H.; Wocjan, P., Mutually unbiased bases and orthogonal decompositions of Lie algebras, Quantum Inf. Comput., 7, 4, 371-382 (2007) · Zbl 1152.81680
[14] Brown, W. P., Generalized matrix algebras, Canad. J. Math., 7, 188-190 (1955) · Zbl 0064.03404 · doi:10.4153/CJM-1955-023-2
[15] Calderbank, A. R.; Rains, E. M.; Shor, P. W.; Sloane, N. J. A., Quantum error correction and orthogonal geometry, Phys. Rev. Lett., 78, 3, 405-408 (1997) · Zbl 1005.94541 · doi:10.1103/PhysRevLett.78.405
[16] Chase, S. U., Direct products of modules, Trans. Amer. Math. Soc., 97, 3, 457-473 (1960) · Zbl 0100.26602 · doi:10.1090/S0002-9947-1960-0120260-3
[17] Cuntz, J.; Quillen, D., Algebra extensions and nonsingularity, J. Amer. Math. Soc., 8, 2, 251-289 (1995) · Zbl 0838.19001 · doi:10.1090/S0894-0347-1995-1303029-0
[18] Deligne, P., Le formalisme des cycles évanescents, Groupes de monodromie en géométrie algébrique, 340, 82-115 (1973) · Zbl 0266.14008 · doi:10.1007/BFb0060509
[19] Dlab, V.; Ringel, C. M., Quasi-hereditary algebras, Illinois J. Math., 33, 2, 280-291 (1989) · Zbl 0666.16014 · doi:10.1215/ijm/1255988725
[20] Donovan, W., Perverse schobers and wall crossing, Int. Math. Res. Not. IMRN, 2019, 18, 5777-5810 (2019) · Zbl 1451.14137 · doi:10.1093/imrn/rnx280
[21] Efimov, A. I., On the homotopy finiteness of DG categories, Uspekhi Mat. Nauk, 74, 3-447, 63-94 (2019) · Zbl 1445.18006 · doi:10.4213/rm9887
[22] Englert, B.-G.; Aharonov, Ya., The mean king’s problem: prime degrees of freedom, Phys. Lett. A, 284, 1, 1-5 (2001) · doi:10.1016/S0375-9601(01)00271-7
[23] Filippov, S. N.; Man’ko, V. I., Mutually unbiased bases: tomography of spin states and the star-product scheme, Phys. Scr., 2011, T143 (2011) · doi:10.1088/0031-8949/2011/T143/014010
[24] Franjou, V.; Pirashvili, T., Comparison of abelian categories recollements, Doc. Math., 9, 41-56 (2004) · Zbl 1060.18008
[25] Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W. B. R.; Millet, K.; Ocneanu, A., A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N. S.), 12, 2, 239-246 (1985) · Zbl 0572.57002 · doi:10.1090/S0273-0979-1985-15361-3
[26] Gelfand, S. I.; Manin, Yu. I., Methods of homological algebra (1988), Nauka: Nauka, Moscow · Zbl 0668.18001 · doi:10.1007/978-3-662-03220-6
[27] Gottesman, D., Class of quantum error-correcting codes saturating the quantum Hamming bound, Phys. Rev. A (3), 54, 3, 1862-1868 (1996) · doi:10.1103/PhysRevA.54.1862
[28] Haagerup, U., Orthogonal maximal abelian \(*\)-subalgebras of the \(n\times n\) matrices and cyclic \(n\)-roots, Operator algebras and quantum field theory, 296-322 (1997) · Zbl 0914.46045
[29] Harder, A.; Katzarkov, L., Perverse sheaves of categories and some applications, Adv. Math., 352, 1155-1205 (2019) · Zbl 1440.14084 · doi:10.1016/j.aim.2019.05.024
[30] Huang, Y., Entanglement criteria via concave-function uncertainty relations, Phys. Rev. A, 82, 1 (2010) · doi:10.1103/PhysRevA.82.012335
[31] Ivonović, I. D., Geometrical description of quantal state determination, J. Phys. A, 14, 12, 3241-3245 (1981) · doi:10.1088/0305-4470/14/12/019
[32] Jacobson, N., Amer. Math. Soc. Colloq. Publ., 39 (1968), Amer. Math. Soc.: Amer. Math. Soc., Providence, RI · Zbl 0218.17010
[33] Jones, V. F. R., Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2), 126, 2, 335-388 (1987) · Zbl 0631.57005 · doi:10.2307/1971403
[34] Kapranov, M.; Schechtman, V., Perverse schobers (201512014)
[35] Kapranov, M.; Schechtman, V., Perverse sheaves over real hyperplane arrangements, Ann. of Math. (2), 183, 2, 619-679 (2016) · Zbl 1360.14062 · doi:10.4007/annals.2016.183.2.4
[36] Kapranov, M.; Schechtman, V., Perverse sheaves and graphs on surfaces (2016)
[37] Kocherova, A. S.; Zhdanovskiy, I. Yu., On the algebra generated by projectors with commutator relation, Lobachevskii J. Math., 38, 4, 670-687 (2017) · Zbl 1373.81130 · doi:10.1134/S1995080217040126
[38] Kostrikin, A. I.; Kostrikin, I. A.; Ufnarovskii, V. A., Orthogonal decompositions of simple Lie algebras (type \(A_n)\), Proc. Steklov Inst. Math., 158, 105-120 (1981) · Zbl 0526.17003
[39] Kostrikin, A. I.; Kostrikin, I. A.; Ufnarovskiĭ, V. A., On the uniqueness of orthogonal decompositions of Lie algebras of types \(A_n\) and \(C_n\). I, II, Studies in algebra and topology, 74, 80-105, 106 (1983) · Zbl 0536.17004
[40] Kostrikin, A. I.; Tiep, P. H., Orthogonal decompositions and integral lattices, 15 (1994) · Zbl 0855.11033 · doi:10.1515/9783110901757
[41] Kuhn, N. J., Generic representations of the finite general linear groups and the Steenrod algebra. II, K-theory, 8, 4, 395-428 (1994) · Zbl 0830.20065 · doi:10.1007/BF00961409
[42] Kuznetsov, A.; Lunts, V. A., Categorical resolutions of irrational singularities, Int. Math. Res. Not. IMRN, 2015, 13, 4536-4625 (2015) · Zbl 1338.14020 · doi:10.1093/imrn/rnu072
[43] Matolcsi, M.; Szöllősi, F., Towards a classification of \(6\times 6\) complex Hadamard matrices, Open Syst. Inf. Dyn., 15, 2, 93-108 (2008) · Zbl 1145.81026 · doi:10.1142/S1230161208000092
[44] Nicoară, R., A finiteness result for commuting squares of matrix algebras, J. Operator Theory, 55, 2, 295-310 (2006) · Zbl 1115.46052
[45] Orlov, D., Smooth and proper noncommutative schemes and gluing of DG categories, Adv. Math., 302, 59-105 (2016) · Zbl 1368.14031 · doi:10.1016/j.aim.2016.07.014
[46] Petrescu, M., PhD thesis (1997)
[47] Popa, S., Orthogonal pairs of \(*\)-subalgebras in finite von Neumann algebras, J. Operator Theory, 9, 2, 253-268 (1983) · Zbl 0521.46048
[48] Ruskai, M. B., Some connections between frames, mutually unbiased bases, and POVM’s in quantum information theory, Acta Appl. Math., 108, 3, 709-719 (2009) · Zbl 1180.81031 · doi:10.1007/s10440-009-9508-3
[49] Schechtman, V., Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, …), Ann. Fac. Sci. Toulouse Math. (6), 22, 2, 353-375 (2013) · Zbl 1275.33026 · doi:10.5802/afst.1375
[50] Schwinger, J., Unitary operator bases, Proc. Nat. Acad. Sci. U.S.A., 46, 4, 570-579 (1960) · Zbl 0090.19006 · doi:10.1073/pnas.46.4.570
[51] Szöllősi, F., Complex Hadamard matrices of order 6: a four-parameter family, J. Lond. Math. Soc. (2), 85, 3, 616-632 (2012) · Zbl 1242.05044 · doi:10.1112/jlms/jdr052
[52] Tadej, W.; Życzkowski, K., Defect of a unitary matrix, Linear Algebra Appl., 429, 2-3, 447-481 (2008) · Zbl 1143.15024 · doi:10.1016/j.laa.2008.02.036
[53] Vaidman, L.; Aharonov, Ya.; Albert, D. Z., How to ascertain the values of \(\sigma_x, \sigma_y\) and \(\sigma_z\) of a spin-1/2 particle, Phys. Rev. Lett., 58, 14, 1385-1387 (1987) · doi:10.1103/PhysRevLett.58.1385
[54] Wootters, W. K.; Fields, B. D., Optimal state-determination by mutually unbiased measurements, Ann. Physics, 191, 2, 363-381 (1989) · doi:10.1016/0003-4916(89)90322-9
[55] Zhdanovskiy, I. Yu., Homotopes of finite-dimensional algebras, Comm. Algebra, 49, 1, 43-57 (2020) · Zbl 1468.16015 · doi:10.1080/00927872.2020.1792918
[56] Zhdanovskiy, I. Yu.; Kocherova, A. S., Algebras of projectors and mutually unbiased bases in dimension 7, J. Math. Sci. (N. Y.), 138, 2, 19-49 (2017) · Zbl 1428.94047 · doi:10.1007/s10958-019-04413-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.