×

Deforming Lie algebras to Frobenius integrable nonautonomous Hamiltonian systems. (English) Zbl 1489.37079

Summary: Motivated by the theory of Painlevé equations and associated hierarchies, we study nonautonomous Hamiltonian systems that are Frobenius integrable. We establish sufficient conditions under which a given finite-dimensional Lie algebra of Hamiltonian vector fields can be deformed into a time-dependent Lie algebra of Frobenius integrable vector fields spanning the same distribution as the original algebra. The results are applied to quasi-Stäckel systems from [K. Marciniak and M. Błaszak, SIGMA, Symmetry Integrability Geom. Methods Appl. 13, Paper 077, 15 p. (2017; Zbl 1387.70019)].

MSC:

37J65 Nonautonomous Hamiltonian dynamical systems (Painlevé equations, etc.)
37J37 Relations of finite-dimensional Hamiltonian and Lagrangian systems with Lie algebras and other algebraic structures
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
17B80 Applications of Lie algebras and superalgebras to integrable systems

Citations:

Zbl 1387.70019

References:

[1] Bertola, M.; Cafasso, M.; Rubtsov, V., Noncommutative Painlevé equations and systems of Calogero type, Commun. Math. Phys., 363, 503-530 (2018) · Zbl 1402.34092
[2] Błaszak, M., Multi-Hamiltonian Theory of Dynamical Systems (1998), Springer: Springer Berlin · Zbl 0912.58017
[3] Błaszak, M., Separable systems with quadratic in momenta first integrals, J. Phys. A: Math. Gen., 38, 1667-1685 (2005) · Zbl 1064.37046
[4] Błaszak, M.; Sergyeyev, A., Natural coordinates for a class of Benenti systems, Phys. Lett. A, 365, 1-2, 28-33 (2007), arXiv:nlin/0604022 · Zbl 1203.37093
[5] Dunajski, M., Solitons, Instantons, and Twistors (2010), Oxford University Press: Oxford University Press Oxford · Zbl 1197.35209
[6] Fecko, M., Differential Geometry and Lie Groups for Physicists (2006), Cambridge University Press: Cambridge University Press New York · Zbl 1121.53001
[7] Ferreira, L. A.; Zakrzewski, W. J., A simple formula for the conserved charges of soliton theories, JHEP, 09, Article 015 pp. (2007)
[8] Goriely, A., Integrability and Nonintegrability of Dynamical Systems (2001), World Scientific: World Scientific River Edge, NJ · Zbl 1002.34001
[9] Iwasaki, K.; Kimura, H.; Shimomura, S.; Yoshida, M., From Gauss to Painlevé. A Modern Theory of Special Functions (1991), Vieweg & Sohn: Vieweg & Sohn Braunschweig · Zbl 0743.34014
[10] Kimura, H., The degeneration of the two-dimensional Garnier system and the polynomial Hamiltonian structure, Ann. Mat. Pura Appl., 155, 25-74 (1989) · Zbl 0693.34043
[11] Liouville, J., Note sur l’intégration des équations différentielles de la Dynamique, présentée au Bureau des Longitudes le 29 juin 1853, J. Math. Pur. Appl., 20, 137-138 (1855)
[12] Lundell, A. T., A short proof of the Frobenius theorem, Proc. Amer. Math. Soc., 116, 4, 1131-1133 (1992) · Zbl 0766.58006
[13] Manakov, S. V.; Santini, P., Integrable dispersionless PDEs arising as commutation condition of pairs of vector fields, J. Phys. Conf. Ser., 482, Article 012029 pp. (2014)
[14] Marciniak, K.; Błaszak, M., Non-homogeneous hydrodynamic systems and quasi-Stäckel Hamiltonians, SIGMA, 13, 15 (2017), art. 077, arXiv:1706.02873v2 · Zbl 1387.70019
[15] Marikhin, V. G., On three-dimensional quasi-Stäckel Hamiltonians, J. Phys. A: Math. Theor., 47, 17, 6 (2014), art. 175201 · Zbl 1372.37112
[16] Marsden, J. E.; Ratiu, T. S., Introduction to mechanics and symmetry (1999), Springer: Springer New York · Zbl 0933.70003
[17] Noumi, M., Painlevé Equations Through Symmetry (2004), AMS: AMS Providence, RI · Zbl 1077.34003
[18] Okamoto, K., The Hamiltonians Associated to the Painlevé Equations, (Conte, Robert, The Painlevé Property. One Century Later. (1999), Springer: Springer New York), 735-787 · Zbl 1017.37032
[19] Olver, P. J., Application of Lie Groups to Differential Equations (1993), Springer: Springer New York · Zbl 0785.58003
[20] Oteo, J. A.; Ros, J., From time-ordered products to Magnus expansion, J. Math. Phys., 41, 5, 3268-3277 (2000) · Zbl 0979.81039
[21] Rogers, C.; Shadwick, W. F., Bäcklund Transformations and their Applications (1982), Academic Press: Academic Press New York · Zbl 0492.58002
[22] Sergyeyev, A., A simple construction of recursion operators for multidimensional dispersionless integrable systems, J. Math. Anal. Appl., 454, 2, 468-480 (2017) · Zbl 1373.37159
[23] Sergyeyev, A., Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs, Phys. Lett. A, 376, 28-29, 2015-2022 (2012), arXiv:1008.1575 · Zbl 1266.37025
[24] Sergyeyev, A., New integrable (3+1)-dimensional systems and contact geometry, Lett. Math. Phys., 108, 359-376 (2018), arXiv:1401.2122 · Zbl 1384.37087
[25] Takasaki, K., Hamiltonian Structure of PI Hierarchy, SIGMA, 3, 32 (2007), art. 042 · Zbl 1147.34065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.