×

Square-free divisor complexes of certain numerical semigroup elements. (English) Zbl 1492.13017

A numerical semigroup \(S\) is an additive subsemigroup of the non-negative integers with finite complement. Throughout, \(S\) is assumed to have minimal generating set \(\{n_1, \ldots, n_d\}\). For \(m \in S\), the squarefree divisor complex \(\Delta_m^S\) of \(m\) in \(S\) is the simplicial complex on \([d] = \{1, \ldots, d\}\) whose faces are \[ \{ F \in [d] \ \mid \ m - n_F \in S \}, \] where \(n_F = \sum\limits_{i \in F} n_i\). Squarefree divisor complexes, also called (upper) Koszul complexes, were introduced in [W. Bruns and J. Herzog, J. Pure Appl. Algebra 122, No. 3, 185–208 (1997; Zbl 0884.13006)] in the context of semigroup rings to study multigraded Betti numbers. In particular, for numerical semigroup rings, they appear in the Hilbert series of \(S\) via the formula \[ \mathcal{H}(S;t) = \sum\limits_{m \in S} t^m = \frac{\sum_{m \in S} \chi(\Delta_m) t^m}{(1-t^{n_1})\cdots(1-t^{n_d})}, \] where \(\chi(\Delta_m) = \sum\limits_{F \in \Delta_m} (-1)^{|F|}\) is the Euler characteristic of \(\Delta_m\).
This paper accomplishes two main tasks. First, it produces a family of simplicial complexes called fat forests that can be realized as squarefree divisor complexes [Corollary 2.8] via a novel iterative method. Fat trees are simplicial complexes whose facets \(F_1, F_2, \ldots\) can be ordered so that \(F_j \cap \bigcup_{i < j} F_i\) is a simplex; fat forests are disjoint unions of fat trees. The method is to show a method for creating fat trees as squarefree divisor complexes by adding specific elements to the semigroup \(S\) [Theorem 2.6], then showing how to combine semigroups \(S\) and \(S'\) to form a new semigroup \(T\) so that the squarefree divisor complex \(\Delta_{kk'}^T\) is a disjoint union of \(\Delta_k^S\) and \(\Delta_{k'}^{S'}\) [Theorem 2.4].
Second, the article investigates two particular classes of numerical semigroups: supersymmetric numerical semigroups and numerical semigroups with embedding dimension \(3\). For supersymmetric \(S\), the authors identify a special class of elements of \(S\) whose squarefree divisor complexes have nonzero Euler characteristic [Theorem 3.1], then show that these are in fact the only \(m\) where \(\Delta_m\) has nonzero Euler characteristic. For \(S = \langle n_1, n_2, n_d \rangle\), the authors classify the squarefree divisor complexes with nonzero Euler characteristic [Theorem 3.5].

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
20M13 Arithmetic theory of semigroups
20M14 Commutative semigroups

Citations:

Zbl 0884.13006

References:

[1] 10.1216/JCA-2015-7-3-317 · Zbl 1350.20043 · doi:10.1216/JCA-2015-7-3-317
[2] 10.1016/j.jpaa.2013.11.007 · Zbl 1282.13025 · doi:10.1016/j.jpaa.2013.11.007
[3] 10.1007/978-1-4939-2969-6 · Zbl 1339.52002 · doi:10.1007/978-1-4939-2969-6
[4] 10.1142/S0218196711006911 · Zbl 1250.20048 · doi:10.1142/S0218196711006911
[5] 10.1142/S0219498806001958 · Zbl 1115.20052 · doi:10.1142/S0219498806001958
[6] 10.1016/S0022-4049(97)00051-0 · Zbl 0884.13006 · doi:10.1016/S0022-4049(97)00051-0
[7] 10.1007/s00233-012-9448-5 · Zbl 1275.20065 · doi:10.1007/s00233-012-9448-5
[8] 10.1137/140989479 · Zbl 1343.20060 · doi:10.1137/140989479
[9] 10.24033/asens.1307 · Zbl 0325.20065 · doi:10.24033/asens.1307
[10] 10.1007/s11856-011-0117-2 · Zbl 1268.20062 · doi:10.1007/s11856-011-0117-2
[11] 10.1007/s11139-017-9904-7 · Zbl 1433.20016 · doi:10.1007/s11139-017-9904-7
[12] 10.1142/S0219498812501770 · Zbl 1281.20075 · doi:10.1142/S0219498812501770
[13] 10.4169/amer.math.monthly.121.10.890 · Zbl 1325.11024 · doi:10.4169/amer.math.monthly.121.10.890
[14] ; Rosales, Houston J. Math., 34, 339 (2008) · Zbl 1198.20051
[15] ; Stanley, Combinatorics and commutative algebra. Progress in Mathematics, 41 (1996) · Zbl 0838.13008
[16] ; Székely, Math. Chronicle, 15, 49 (1986) · Zbl 0666.05009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.