×

Fano manifolds and stability of tangent bundles. (English) Zbl 1472.14044

Let \(X\) be a Fano manifold, that is a complex projective manifold such that the anticanonical divisor \(-K_X\) is ample. If the Picard number of \(X\) is one, a widely believed folklore conjecture claims that the tangent bundle \(T_X\) is semistable (in the sense of Mumford-Takemoto). In this paper the author gives a series of counterexamples to this conjecture!
The counterexamples are obtained by a family of horospherical varieties classified by B. Pasquier [Math. Ann. 344, No. 4, 963–987 (2009; Zbl 1173.14028)]: for these manifolds the action of the group \(\mbox{Aut}^0(X)\) on \(X\) has two orbits, the open orbit \(X^0\) and a closed orbit \(Z\). Moreover the action on the blow-up \(\mbox{Bl}_Z X\) again has two orbits, the open orbit \(X^0\) and the exceptional divisor \(E\). The manifold \(\mbox{Bl}_Z X\) admits a smooth fibration onto a lower-dimensional manifold \(Y\), the push-forward of the relative tangent bundle to \(X\) defines an algebraically integrable foliation \(\mathcal F \subset T_X\). The author shows that this foliation is canonical in the sense that it is the unique algebraically integrable foliation on \(X\) that is \(\mbox{Aut}^0(X)\)-invariant. General arguments show that the stability of \(T_X\) can be verified by computing the slope of the foliation \(\mathcal F\). It turns out that for infinitely many manifolds in Pasquier’s list, the subsheaf \(\mathcal F \subset T_X\) destabilises the tangent bundle. The reviewer recommends to any complex geometer to read this beautiful paper.

MSC:

14J45 Fano varieties
32Q26 Notions of stability for complex manifolds
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
53C55 Global differential geometry of Hermitian and Kählerian manifolds

Citations:

Zbl 1173.14028

References:

[1] F. Ambro, Ladders on Fano varieties, J. Math. Sci. 94 (1999), 1126-1135. · Zbl 0948.14033
[2] C. Araujo, Positivity and algebraic integrability of holomorphic foliations, Proceedings of the international congress of mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ. Hackensack (2018), 547-563. · Zbl 1457.32053
[3] C. Araujo and S. Druel, On codimension 1 del Pezzo foliations on varieties with mild singularities, Math. Ann. 360 (2014), no. 3-4, 769-798. · Zbl 1396.14035
[4] C. Araujo and S. Druel, On Fano foliations 2, Foliation theory in algebraic geometry, Simons Symp., Springer, Cham (2016), 1-20. · Zbl 1382.14012
[5] C. Araujo and S. Druel, Codimension 1 Mukai foliations on complex projective manifolds, J. reine angew. Math. 727 (2017), 191-246. · Zbl 1395.32016
[6] C. Araujo, S. Druel and S. J. Kovács, Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math. 174 (2008), no. 2, 233-253. · Zbl 1162.14037
[7] R. J. Berman, K-polystability of \(\mathbb{Q} \)-Fano varieties admitting Kähler-Einstein metrics, Invent. Math. 203 (2016), no. 3, 973-1025. · Zbl 1353.14051
[8] I. Biswas, Tangent bundle of a complete intersection, Trans. Amer. Math. Soc. 362 (2010), no. 6, 3149-3160. · Zbl 1191.14019
[9] I. Biswas, A. Dey, O. Genc and M. Poddar, On stability of tangent bundle of toric varieties, preprint (2018), https://arxiv.org/abs/1808.08701v1.
[10] I. Biswas and G. Schumacher, On the stability of the tangent bundle of a hypersurface in a Fano variety, J. Math. Kyoto Univ. 45 (2005), no. 4, 851-860. · Zbl 1097.14035
[11] F. Bogomolov and M. McQuillan, Rational curves on foliated varieties, Foliation theory in algebraic geometry, Simons Symp., Springer, Cham (2016), 21-51. · Zbl 1337.14041
[12] J.-B. Bost, Algebraic leaves of algebraic foliations over number fields, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 161-221. · Zbl 1034.14010
[13] N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer, Berlin 2002. · Zbl 0983.17001
[14] F. Campana and T. Peternell, Projective manifolds with splitting tangent bundle. I, Math. Z. 241 (2002), no. 3, 613-637. · Zbl 1065.14054
[15] X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183-197. · Zbl 1312.53096
[16] X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2\pi, J. Amer. Math. Soc. 28 (2015), no. 1, 199-234. · Zbl 1312.53097
[17] X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2\pi and completion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 235-278. · Zbl 1311.53059
[18] T. Delcroix, K-stability of Fano spherical varieties, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 3, 615-662. · Zbl 1473.14098
[19] T. Delcroix, The Yau-Tian-Donaldson conjecture for cohomogeneity one manifolds, preprint (2020), https://arxiv.org/abs/2011.07135v1.
[20] J. Déserti and D. Cerveau, Feuilletages et actions de groupes sur les espaces projectifs, Mém. Soc. Math. Fr. (N.S.) 103 (2005). · Zbl 1107.37037
[21] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. (3) 50 (1985), no. 1, 1-26. · Zbl 0529.53018
[22] S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), no. 1, 231-247. · Zbl 0627.53052
[23] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289-349. · Zbl 1074.53059
[24] J. P. Figueredo, Del Pezzo foliations with log canonical singularities, preprint (2019), https://arxiv.org/abs/1909.03401v1.
[25] A. Fujiki and S. Nakano, Supplement to “On the inverse of monoidal transformation”, Publ. Res. Inst. Math. Sci. 7 (1971/72), 637-644. · Zbl 0234.32019
[26] R. Gonzales, C. Pech, N. Perrin and A. Samokhin, Geometry of horospherical varieties of Picard rank one, preprint (2019), https://arxiv.org/abs/1803.05063v2.
[27] R. Hartshorne, Ample vector bundles on curves, Nagoya Math. J. 43 (1971), 73-89. · Zbl 0205.25402
[28] M. Hering, B. Nill and H. Süß, Stability of tangent bundles on smooth toric Picard-rank-2 varieties and surfaces, preprint (2019), https://arxiv.org/abs/1910.08848v1.
[29] A. Höring, Uniruled varieties with split tangent bundle, Math. Z. 256 (2007), no. 3, 465-479. · Zbl 1137.14030
[30] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Math. Libr., Cambridge University Press, Cambridge 2010. · Zbl 1206.14027
[31] J.-M. Hwang, Stability of tangent bundles of low-dimensional Fano manifolds with Picard number 1, Math. Ann. 312 (1998), no. 4, 599-606. · Zbl 0932.14025
[32] J.-M. Hwang, Tangent vectors to Hecke curves on the moduli space of rank 2 bundles over an algebraic curve, Duke Math. J. 101 (2000), no. 1, 179-187. · Zbl 0988.14013
[33] J.-M. Hwang, Geometry of minimal rational curves on Fano manifolds, School on vanishing theorems and effective results in algebraic geometry (Trieste 2000), ICTP Lect. Notes 6, Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste (2001), 335-393. · Zbl 1086.14506
[34] J.-M. Hwang and N. Mok, Varieties of minimal rational tangents on uniruled projective manifolds, Several complex variables (Berkeley 1995-1996), Math. Sci. Res. Inst. Publ. 37, Cambridge University Press, Cambridge (1999), 351-389. · Zbl 0978.53118
[35] J. N. N. Iyer, Stability of tangent bundle on the moduli space of stable bundles on a curve, preprint (2014), https://arxiv.org/abs/1111.0196v5.
[36] S. Kebekus, L. Solá Conde and M. Toma, Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom. 16 (2007), no. 1, 65-81. · Zbl 1120.14011
[37] S. Kobayashi, Curvature and stability of vector bundles, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 4, 158-162. · Zbl 0538.32021
[38] A. G. Kuznetsov, On linear sections of the spinor tenfold. I, Izv. Ross. Akad. Nauk Ser. Mat. 82 (2018), no. 4, 53-114. · Zbl 1420.14094
[39] J. Liu, Stability of tangent bundles of complete intersections and effective restriction, preprint (2018), https://arxiv.org/abs/1711.03413v3.
[40] M. Lübke, Stability of Einstein-Hermitian vector bundles, Manuscripta Math. 42 (1983), no. 2-3, 245-257. · Zbl 0558.53037
[41] Y. Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145-150. · Zbl 0091.34803
[42] V. B. Mehta and A. Ramanathan, Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1981/82), no. 3, 213-224. · Zbl 0473.14001
[43] M. Mella, Existence of good divisors on Mukai varieties, J. Algebraic Geom. 8 (1999), no. 2, 197-206. · Zbl 0970.14023
[44] Y. Miyaoka, Deformations of a morphism along a foliation and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick 1985), Proc. Sympos. Pure Math. 46, American Mathematical Society, Providence (1987), 245-268. · Zbl 0659.14008
[45] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry (Sendai 1985), Adv. Stud. Pure Math. 10, North-Holland, Amsterdam (1987), 449-476. · Zbl 0648.14006
[46] Y. Miyaoka and T. Peternell, Geometry of higher-dimensional algebraic varieties, DMV Seminar 26, Birkhäuser, Basel 1997. · Zbl 0865.14018
[47] S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA 86 (1989), no. 9, 3000-3002. · Zbl 0679.14020
[48] S. Nakano, On the inverse of monoidal transformation, Publ. Res. Inst. Math. Sci. 6 (1970/71), 483-502. · Zbl 0234.32017
[49] G. Occhetta, E. A. Romano, L. E. Solá Conde and J. A. Wiśniewski, Small bandwidth \(\mathbb{C}}^* \)-actions and birational geometry, preprint (2019), https://arxiv.org/abs/1911.12129v1.
[50] B. Pasquier, On some smooth projective two-orbit varieties with Picard number 1, Math. Ann. 344 (2009), no. 4, 963-987. · Zbl 1173.14028
[51] T. Peternell, Subsheaves in the tangent bundle: Integrability, stability and positivity, School on vanishing theorems and effective results in algebraic geometry (Trieste 2000), ICTP Lect. Notes 6, Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste (2001), 285-334. · Zbl 1027.14009
[52] T. Peternell and J. A. Wiśniewski, On stability of tangent bundles of Fano manifolds with \(b_2=1\), J. Algebraic Geom. 4 (1995), no. 2, 363-384. · Zbl 0837.14033
[53] Z. Reichstein and B. Youssin, Equivariant resolution of points of indeterminacy, Proc. Amer. Math. Soc. 130 (2002), no. 8, 2183-2187. · Zbl 0997.14004
[54] M. Reid, Bogomolov’s theorem c_1^2\leq 4c_2, Proceedings of the international symposium on algebraic geometry (Kyoto 1977), Kinokuniya Book Store, Tokyo (1978), 623-642. · Zbl 0478.14003
[55] N. I. Shepherd-Barron, Miyaoka’s theorems on the generic seminegativity of \(T_X\) and on the Kodaira dimension of minimal regular threefolds, Flips and abundance for algebraic threefolds, Astérisque 211, Société Mathématique de France, Paris (1992), 103-114. · Zbl 0809.14034
[56] D. M. Snow, The nef value and defect of homogeneous line bundles, Trans. Amer. Math. Soc. 340 (1993), no. 1, 227-241. · Zbl 0808.14042
[57] A. Steffens, On the stability of the tangent bundle of Fano manifolds, Math. Ann. 304 (1996), no. 4, 635-643. · Zbl 0865.14023
[58] S. Subramanian, Stability of the tangent bundle and existence of a Kähler-Einstein metric, Math. Ann. 291 (1991), no. 4, 573-577. · Zbl 0766.14009
[59] E. A. Tevelev, Projective duality and homogeneous spaces, Encyclopaedia Math. Sci. 133, Springer, Berlin 2005. · Zbl 1071.14052
[60] G. Tian, On stability of the tangent bundles of Fano varieties, Internat. J. Math. 3 (1992), no. 3, 401-413. · Zbl 0779.53009
[61] G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1-37. · Zbl 0892.53027
[62] G. Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085-1156. · Zbl 1318.14038
[63] K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), S257-S293, · Zbl 0615.58045
[64] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Grad. Texts in Math. 94, Springer, New York 1983. · Zbl 0516.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.