×

Non-orbital characterizations of strange attractors: effective intervals and multifractality measures. (English) Zbl 1459.37069

Summary: Numerical simulations reveal statistical distributions given by power laws resulting from movements of large quantities of phase points captured by strange attractors immersed in one-dimensional or two-dimensional phase spaces, attractors linked to ten specific dynamic systems. Unlike the characterization given by classical approaches as generalized dimensions and spectrum of singularities, the aforementioned distributions do not have their origin in observations of successive orbits, as consequence properties that would otherwise remain hidden are revealed. Specifically, occupancy times and occupancy numbers associated with small hypercubes that cover attractors obey well-defined statistical distributions given by power laws. One application concerns the determination of the intervals in which the most likely values of those numbers and times are located (effective intervals). The use of the effective interval with occupancy numbers to quantify the multifractalities (multifractality measures) is another application. The statistical approaches underlying the results consist of new paradigms that join the well-known classic paradigms to expand knowledge about strange attractors. The possibility that other attractors immersed in spaces with the same dimensions as those considered here exhibit analogous distributions is not ruled out due to the arbitrariness of the set taken.
©2021 American Institute of Physics

MSC:

37M05 Simulation of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
28A80 Fractals

Software:

Dynamics
Full Text: DOI

References:

[1] Ott, E., Chaos in Dynamical Systems (1994), Cambridge University Press: Cambridge University Press, New York
[2] Hentschel, H.; Procaccia, I., The infinite number of generalized dimensions of fractals and strange attractors, Physica D, 8, 435-444 (1983) · Zbl 0538.58026 · doi:10.1016/0167-2789(83)90235-X
[3] Grassberger, P., Generalized dimensions of strange attractors, Phys. Lett. A, 97, 227-230 (1983) · doi:10.1016/0375-9601(83)90753-3
[4] Halsey, T.; Jensen, M.; Kadanoff, L.; Procaccia, I.; Shraiman, B., Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A, 33, 1141-1151 (1986) · Zbl 1184.37028 · doi:10.1103/PhysRevA.33.1141
[5] Chhabra, A.; Jensen, R., Direct determination of the f \(( \alpha )\) singularity spectrum, Phys. Rev. Lett., 62, 1327-1330 (1989) · doi:10.1103/PhysRevLett.62.1327
[6] Chhabra, A.; Meneveau, C.; Jensen, R.; Sreenivasan, K., Direct determination of the f \(( \alpha )\) singularity spectrum and its application to fully developed turbulence, Phys. Rev. A, 40, 5284-5295 (1989) · doi:10.1103/PhysRevA.40.5284
[7] Witten, J. T. A.; Sander, L., Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett., 47, 1400-1403 (1981) · doi:10.1103/PhysRevLett.47.1400
[8] Sander, L. M., Diffusion-limited aggregation, a kinetic critical phenomenon?, Contemp. Phys., 41, 203-218 (2000) · doi:10.1080/001075100409698
[9] Chaudhari, A.; Yan, C.-C. S.; Lee, S.-L., Multifractal scaling analysis of autopoisoning reactions over a rough surface, J. Phys. A: Math. Gen., 36, 3757-3772 (2003) · doi:10.1088/0305-4470/36/13/309
[10] Adams, D.; Sander, L. M.; Somfai, E.; Ziff, R. M., The harmonic measure of diffusion-limited aggregates including rare events, Europhys. Lett., 87, 20001 (2009) · doi:10.1209/0295-5075/87/20001
[11] Kamer, Y.; Ouillon, G.; Sornette, D., Barycentric fixed-mass method for multifractal analysis, Phys. Rev. E, 88, 022922 (2013) · doi:10.1103/PhysRevE.88.022922
[12] Jizba, P.; Arimitsu, T., The world according to Rényi: Thermodynamics of multifractal systems, Ann. Phys., 312, 17-59 (2004) · Zbl 1044.82001 · doi:10.1016/j.aop.2004.01.002
[13] Vavrek, R.; Balázs, L. G.; Mészáros, A.; Horváth, I.; Bagoly, Z., Testing the randomness in the sky-distribution of gamma-ray bursts, Mon. Not. R. Astron. Soc., 391, 741-748 (2008) · doi:10.1111/j.1365-2966.2008.13635.x
[14] Sarkar, P.; Yadav, J.; Pandey, B.; Bharadwaj, S., The scale of homogeneity of the galaxy distribution in SDSS DR6, Mon. Not. R. Astron. Soc., 399, L128-L131 (2009) · doi:10.1111/j.1745-3933.2009.00738.x
[15] Miller, B. N.; Rouet, J.-L., Cosmology in one dimension: Fractal geometry, power spectra and correlation, J. Stat. Mech., 2010, P12028 (2010) · doi:10.1088/1742-5468/2010/12/P12028
[16] Yadav, J. K.; Bagla, J. S.; Khandai, N., Fractal dimension as a measure of the scale of homogeneity, Mon. Not. R. Astron. Soc., 405, 2009-2015 (2010) · doi:10.1111/j.1365-2966.2010.16612.x
[17] Gaite, J., The fractal geometry of the cosmic web and its formation, Adv. Astron., 2019, 6587138
[18] Fernández, E.; Bolea, J.; Ortega, G.; Louis, E., Are neurons multifractals?, J. Neurosci. Methods, 89, 151-157 (1999) · doi:10.1016/S0165-0270(99)00066-7
[19] Zheng, Y.; Gao, J.; Sanchez, J. C.; Principe, J. C.; Okun, M. S., Multiplicative multifractal modeling and discrimination of human neuronal activity, Phys. Lett. A, 344, 253-264 (2005) · Zbl 1194.92017 · doi:10.1016/j.physleta.2005.06.092
[20] Milton, J. G., Introduction to focus issue: Bipedal locomotion—From robots to humans, Chaos, 19, 253-264 (2009) · doi:10.1063/1.3155067
[21] Uthayakumar, R.; Easwaramoorthy, D., Multifractal-wavelet based denoising in the classification of healthy and epileptic EEG signals, Fluct. Noise Lett., 11, 1250034 (2012) · doi:10.1142/S0219477512500344
[22] Zorick, T.; Mandelkern, M. A., Multifractal detrended fluctuation analysis of human EEG: Preliminary investigation and comparison with the wavelet transform modulus maxima technique, PLoS One, 8, e68360 (2013) · doi:10.1371/journal.pone.0068360
[23] Vergotte, G.; Perrey, S.; Muthuraman, M.; Janaqi, S.; Torre, K., Concurrent changes of brain functional connectivity and motor variability when adapting to task constraints, Front. Physiol., 9, 909 (2018) · doi:10.3389/fphys.2018.00909
[24] França, L. G. S.; Miranda, J. G. V.; Leite, M.; Sharma, N. K.; Walker, M. C.; Lemieux, L.; Wang, Y., Fractal and multifractal properties of electrographic recordings of human brain activity: Toward its use as a signal feature for machine learning in clinical applications, Front. Physiol., 9, 1767 (2018) · doi:10.3389/fphys.2018.01767
[25] Cheng, Y., Defining urban and rural regions by multifractal spectrums of urbanization, Fractals, 24, 165004 (2016) · doi:10.1142/S0218348X16500043
[26] Chakraborty, B.; Haris, K.; Latha, N. M. G.; Menezes, A., Multifractal approach for seafloor characterization, IEEE Geosci. Remote Sens. Lett., 11, 54-58 (2014) · doi:10.1109/LGRS.2013.2245856
[27] Wawrzaszek, A.; Macek, W. M., Observation of the multifractal spectrum in solar wind turbulence by Ulysses at high latitudes, J Geophys. Res. Space Phys., 115, A07104 (2010) · doi:10.1029/2009JA015176
[28] Gualtiero, B.; Domeisen, D., Nonlinear stratospheric variability: Multifractal detrended fluctuation analysis and singularity spectra, Proc. R. Soc. A, 472, 2191 (2016) · doi:10.1098/rspa.2015.0864
[29] Pardo-Igúzquiza, E.; Dowd, P. A., Fractal analysis of karst landscapes, Math. Geosci., 52, 543-563 (2019) · doi:10.1007/s11004-019-09803-x
[30] Dickman, R., Rain, power laws, and advection, Phys. Rev. Lett., 90, 108701 (2003) · doi:10.1103/PhysRevLett.90.108701
[31] Dickman, R., Fractal rain distributions and chaotic advection, Braz. J. Phys., 34, 337-346 (2004) · doi:10.1590/S0103-97332004000300002
[32] Peters, O.; Hertlein, C.; Christensen, K., A complexity view of rainfall, Phys. Rev. Lett., 88, 018701 (2001) · doi:10.1103/PhysRevLett.88.018701
[33] Peters, O.; Christensen, K., Rain: Relaxations in the sky, Phys. Rev. E, 66, 036120 (2002) · doi:10.1103/PhysRevE.66.036120
[34] Holmes, P.; Zeeman, E. C., A nonlinear oscillator with a strange attractor, Philos. Trans. R. Soc. A, 292, 419-448 (1979) · Zbl 0423.34049 · doi:10.1098/rsta.1979.0068
[35] Hénon, M., A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50, 69-77 (1976) · Zbl 0576.58018 · doi:10.1007/BF01608556
[36] Ikeda, K., Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun., 30, 257-261 (1979) · doi:10.1016/0030-4018(79)90090-7
[37] Ikeda, K.; Daido, H.; Akimoto, O., Optical turbulence: Chaotic behavior of transmitted light from a ring cavity, Phys. Rev. Lett., 45, 709-712 (1980) · doi:10.1103/PhysRevLett.45.709
[38] Lozi, R., Un attracteur étrange (?) du type attracteur de hé non, J. Phys. Colloq., 39, 9-10 (1978) · doi:10.1051/jphyscol:1978505
[39] Nusse, H.; Yorke, J., Dynamics: Numerical Explorations (1994), Springer: Springer, New York · Zbl 0805.58007
[40] Sprott, J.; Xiong, A., Classifying and quantifying basins of attraction, Chaos, 25, 083101 (2015) · Zbl 1374.37026 · doi:10.1063/1.4927643
[41] Fiedler-Ferrara, N.; do Prado, C. P. C., Caos uma introdução (1994), Editora Edgar Blücher Ltd.: Editora Edgar Blücher Ltd., São Paulo
[42] Arnol’d, V. I., Small denominators \(\text{I} \): On the maps of circumference on itself, Trans. Am. Math. Soc., 46, 213-284 (1965) · Zbl 0152.41905 · doi:10.1007/978-3-642-01742-1_10
[43] Sinai, Y. G., Gibbs measures in ergodic theory, Russ. Math. Surv., 27, 21-69 (1972) · Zbl 0255.28016 · doi:10.1070/RM1972v027n04ABEH001383
[44] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467 (1976) · Zbl 1369.37088 · doi:10.1038/261459a0
[45] Zaslavsky, G., The simplest case of a strange attractor, Phys. Lett. A, 69, 145-147 (1978) · doi:10.1016/0375-9601(78)90195-0
[46] Zaslavsky, G.; Rachko, Kh.-R. Ya., Singularities of transition to a turbulent motion, Sov. Phys. JETP, 49, 1039-1044 (1979)
[47] Wikipedia, see https://en.wikipedia.org/wiki/Zaslavskii_map for “Zaslavskii Map” (2020).
[48] Duffing, G., Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz und Ihre Technische Bedeutung (1918), F. Braunschweig, F. Vieweg & Sohn · JFM 46.1168.01
[49] Moon, F. C.; Holmes, P. J., A magnetoelastic strange attractor, J. Sound Vib., 65, 275-296 (1979) · Zbl 0405.73082 · doi:10.1016/0022-460X(79)90520-0
[50] Lorenz, E., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[51] Rössler, O., An equation for continuous chaos, Phys. Lett. A, 57, 397-398 (1976) · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[52] Matsumoto, T., A chaotic attractor from Chua’s circuit, IEEE Trans. Circuits Syst. I Reg. Pap., 12, 1055-1058 (1984) · Zbl 0551.94020 · doi:10.1109/TCS.1984.1085459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.