×

The Beauville-Narasimhan-Ramanan correspondence for twisted Higgs \(V\)-bundles and components of parabolic \(\operatorname{Sp}(2n,\mathbb{R})\)-Higgs moduli spaces. (English) Zbl 1464.14016

The Beauville-Narasimhan-Ramanan (BNR) correspondence (Prop. 3.6 in [A. Beauville et al., J. Reine Angew. Math. 398, 169–179 (1989; Zbl 0666.14015)]) provides a very useful tool for studying the spectral curves constructed via the Hitchin fibration. In this paper the authors generalize the BNR correspondence to the case of parabolic Higgs bundles with regular singularities and Higgs \(V\)-bundles. Using this correspondence along with Bott-Morse theoretic techniques they provide an exact component count for moduli spaces of maximal parabolic \(\operatorname{Sp}(2n,\mathbb{R})\)-Higgs bundles with fixed parabolic structure. This paper is organized as follows. Section 1 is an introduction to the subject and summarizes the main results. Section 2, deals with parabolic \(\operatorname{Sp}(2n,\mathbb{R})\)-Higgs bundles and their moduli. In this section, the authors review basic facts about moduli spaces of parabolic Higgs bundles and set notation. Section 3, deals with the Bott-Morse theory on the moduli space \(\mathcal{M}_{par}(2n,\mathbb{R})\). Section 4, deals with parabolic Higgs Bundles vs. Higgs \(V\)-Bundles. In this section the authors review the correspondence between parabolic Higgs bundles and Higgs \(V\)-bundles. Further details may be found in [G. Kydonakis et al., Math. Z. 297, No. 1–2, 585–632 (2021; Zbl 1457.14026)] and the references therein. Section 5, deals with the BNR correspondence. In this section, the authors study the BNR correspondence for twisted Higgs \(V\)-bundles and twisted parabolic Higgs bundles. Section 6, deals with the topological invariants of the moduli space of parabolic \(\operatorname{Sp}(2n,\mathbb{R})\)-Higgs bundles. Section 7, deals with connected components of \(M^{\max}_{par}(\operatorname{Sp}(2n,\mathbb{R}))\) and Section 8 with connected components of \(M^{\max}_{par}(\operatorname{Sp}(2n,\mathbb{R}))\) with fixed weight \(\frac{1}{2}\). Section 9, deals with the case of rational weights. Here the authors can analogously consider maximal \(\operatorname{Sp}(2n,\mathbb{R})\)-Higgs bundles for a more general choice of weights.

MSC:

14D20 Algebraic moduli problems, moduli of vector bundles
55N32 Orbifold cohomology
14H40 Jacobians, Prym varieties
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
14H70 Relationships between algebraic curves and integrable systems

References:

[1] Baraglia, David; Schaposnik, Laura P., Monodromy of rank 2 twisted Hitchin systems and real character varieties, Trans. Amer. Math. Soc., 370, 8, 5491-5534 (2018) · Zbl 1397.14043 · doi:10.1090/tran/7144
[2] Beauville, Arnaud; Narasimhan, M. S.; Ramanan, S., Spectral curves and the generalised theta divisor, J. Reine Angew. Math., 398, 169-179 (1989) · Zbl 0666.14015 · doi:10.1515/crll.1989.398.169
[3] Biquard, Olivier; Garc\'{\i}a-Prada, Oscar; Mundet i. Riera, Ignasi, Parabolic Higgs bundles and representations of the fundamental group of a punctured surface into a real group, Adv. Math., 372, 107305 pp. (2020) · Zbl 1451.14111 · doi:10.1016/j.aim.2020.107305
[4] Biswas, Indranil, On the existence of unitary flat connections over the punctured sphere with given local monodromy around the punctures, Asian J. Math., 3, 2, 333-344 (1999) · Zbl 0982.14022 · doi:10.4310/AJM.1999.v3.n2.a1
[5] Biswas, Indranil; Gothen, Peter B.; Logares, Marina, On moduli spaces of Hitchin pairs, Math. Proc. Cambridge Philos. Soc., 151, 3, 441-457 (2011) · Zbl 1227.32017 · doi:10.1017/S0305004111000405
[6] Biswas, Indranil; Majumder, Souradeep; Wong, Michael Lennox, Parabolic Higgs bundles and \(\Gamma \)-Higgs bundles, J. Aust. Math. Soc., 95, 3, 315-328 (2013) · Zbl 1307.14018 · doi:10.1017/S1446788713000335
[7] Biswas, I.; Ramanan, S., An infinitesimal study of the moduli of Hitchin pairs, J. London Math. Soc. (2), 49, 2, 219-231 (1994) · Zbl 0819.58007 · doi:10.1112/jlms/49.2.219
[8] Dalakov, Peter, Lectures on Higgs moduli and abelianisation, J. Geom. Phys., 118, 94-125 (2017) · Zbl 1393.53003 · doi:10.1016/j.geomphys.2017.01.001
[9] Furuta, Mikio; Steer, Brian, Seifert fibred homology \(3\)-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math., 96, 1, 38-102 (1992) · Zbl 0769.58009 · doi:10.1016/0001-8708(92)90051-L
[10] Garcia-Fernandez, Mario; Ross, Julius, Balanced metrics on twisted Higgs bundles, Math. Ann., 367, 3-4, 1429-1471 (2017) · Zbl 1361.53056 · doi:10.1007/s00208-016-1416-z
[11] Garc\'{\i}a-Prada, O.; Gothen, P. B.; Mu\~{n}oz, V., Betti numbers of the moduli space of rank 3 parabolic Higgs bundles, Mem. Amer. Math. Soc., 187, 879, viii+80 pp. (2007) · Zbl 1132.14031 · doi:10.1090/memo/0879
[12] Garc\'{\i}a-Prada, O.; Ramanan, S., Twisted Higgs bundles and the fundamental group of compact K\"{a}hler manifolds, Math. Res. Lett., 7, 4, 517-535 (2000) · Zbl 1003.53026 · doi:10.4310/MRL.2000.v7.n4.a17
[13] G\'{o}mez, Tomas L.; Logares, Marina, A Torelli theorem for the moduli space of parabolic Higgs bundles, Adv. Geom., 11, 3, 429-444 (2011) · Zbl 1226.14018 · doi:10.1515/ADVGEOM.2011.010
[14] Gothen, Peter B., Components of spaces of representations and stable triples, Topology, 40, 4, 823-850 (2001) · Zbl 1066.14012 · doi:10.1016/S0040-9383(99)00086-5
[15] Groechenig, Michael, Moduli of flat connections in positive characteristic, Math. Res. Lett., 23, 4, 989-1047 (2016) · Zbl 1368.14021 · doi:10.4310/MRL.2016.v23.n4.a3
[16] Hitchin, N. J., Lie groups and Teichm\"{u}ller space, Topology, 31, 3, 449-473 (1992) · Zbl 0769.32008 · doi:10.1016/0040-9383(92)90044-I
[17] Hitchin, Nigel, Stable bundles and integrable systems, Duke Math. J., 54, 1, 91-114 (1987) · Zbl 0627.14024 · doi:10.1215/S0012-7094-87-05408-1
[18] Hitchin, N. J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), 55, 1, 59-126 (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[19] Konno, Hiroshi, Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface, J. Math. Soc. Japan, 45, 2, 253-276 (1993) · Zbl 0787.53022 · doi:10.2969/jmsj/04520253
[20] Kydonakis, Georgios; Sun, Hao; Zhao, Lutian, Topological invariants of parabolic \(G\)-Higgs bundles, Math. Z., 297, 1-2, 585-632 (2021) · Zbl 1457.14026 · doi:10.1007/s00209-020-02526-4
[21] Log M. Logares, Parabolic \(\textU(p,q)\)-Higgs bundles, Ph. D. thesis, Universidad Aut\'onoma de Madrid, 2006.
[22] Logares, Marina; Martens, Johan, Moduli of parabolic Higgs bundles and Atiyah algebroids, J. Reine Angew. Math., 649, 89-116 (2010) · Zbl 1223.14038 · doi:10.1515/CRELLE.2010.090
[23] Markman, Eyal, Spectral curves and integrable systems, Compositio Math., 93, 3, 255-290 (1994) · Zbl 0824.14013
[24] Nasatyr, Ben; Steer, Brian, Orbifold Riemann surfaces and the Yang-Mills-Higgs equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22, 4, 595-643 (1995) · Zbl 0867.58009
[25] Rayan, Steven, The quiver at the bottom of the twisted nilpotent cone on \(\mathbb{P}^1\), Eur. J. Math., 3, 1, 1-21 (2017) · Zbl 1386.14061 · doi:10.1007/s40879-016-0120-6
[26] Rayan, Steven; Sundbo, Evan, Twisted argyle quivers and Higgs bundles, Bull. Sci. Math., 146, 1-32 (2018) · Zbl 1435.14012 · doi:10.1016/j.bulsci.2018.03.003
[27] Simpson, Carlos T., Harmonic bundles on noncompact curves, J. Amer. Math. Soc., 3, 3, 713-770 (1990) · Zbl 0713.58012 · doi:10.2307/1990935
[28] Simpson, Carlos, Local systems on proper algebraic \(V\)-manifolds, Pure Appl. Math. Q., 7, 4, Special Issue: In memory of Eckart Viehweg, 1675-1759 (2011) · Zbl 1316.14008 · doi:10.4310/PAMQ.2011.v7.n4.a27
[29] Sun2020 H. Sun, Moduli space of \(\Lambda \)-modules on projective Deligne-Mumford stacks, 2003.11674.
[30] Szab\'{o}, Szil\'{a}rd, The birational geometry of unramified irregular Higgs bundles on curves, Internat. J. Math., 28, 6, 1750045, 32 pp. (2017) · Zbl 1375.14117 · doi:10.1142/S0129167X17500458
[31] Yokogawa, K\^oji, Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves, J. Math. Kyoto Univ., 33, 2, 451-504 (1993) · Zbl 0798.14006 · doi:10.1215/kjm/1250519269
[32] Yokogawa, K\^oji, Infinitesimal deformation of parabolic Higgs sheaves, Internat. J. Math., 6, 1, 125-148 (1995) · Zbl 0830.14007 · doi:10.1142/S0129167X95000092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.