×

The fundamental group of the \(p\)-subgroup complex. (English) Zbl 1507.20026

Summary: “We study the fundamental group of the \(p\)-subgroup complex of a finite group \(G\). We show first that \(\pi_1 ( \mathcal{A}_3 ( A_{10} ) )\) is not a free group (here \(A_{10}\) is the alternating group on ten letters). This is the first concrete example in the literature of a \(p\)-subgroup complex with non-free fundamental group. We prove that, modulo a well-known conjecture of Aschbacher, \( \pi_1 ( \mathcal{A}_p ( G ) ) = \pi_1 ( \mathcal{A}_p ( S_G ) ) \ast F\), where \(F\) is a free group and \(\pi_1 ( \mathcal{A}_p ( S_G ) )\) is free if \(S_G\) is not almost simple. Here \(S_G = \Omega_1 ( G ) / O_{p^\prime} ( \Omega_1 ( G ) )\). This result essentially reduces the study of the fundamental group of \(p\)-subgroup complexes to the almost simple case. We also exhibit various families of almost simple groups whose \(p\)-subgroup complexes have free fundamental group.”
With GAP programs the authors compute \( \pi_1 ( \mathcal{A}_3 ( A_{10} )) \), the fundamental group of the geometric realization of the poset of \(3\)-subgroups of \( A_{10} \). This fundamental group is a free product of the free group on 25200 generators and a non-free group on 42 generators and 861 relators whose abelianization is \(\mathbb Z^{42}\). There are no torsion elements in \( \pi_1 ( \mathcal{A}_3 ( A_{10} )) \). The integral homology of \( \mathcal{A}_3 ( A_{10} )\) is known to free abelian. Their Theorem 5.1 allows to construct an infinite number of examples of finite groups \(G\) with non-free \( \pi_1 ( \mathcal{A}_3 ( G ) )\). But other theorems in the paper show that such examples are rather exceptional.

MSC:

20J06 Cohomology of groups
20J05 Homological methods in group theory
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
20D30 Series and lattices of subgroups
05E18 Group actions on combinatorial structures
06A11 Algebraic aspects of posets

Software:

GAP

References:

[1] M.Aschbacher, ‘Simple connectivity of \(p\)‐group complexes’, Israel J. Math.82 (1993) 1-43. · Zbl 0829.20031
[2] M.Aschbacher, Finite group theory, 2nd edn, Cambridge Studies in Advanced Mathematics 10 (Cambridge University Press, Cambridge, 2000) xii+304. · Zbl 0965.20009
[3] M.Aschbacher and Y.Segev, ‘The uniqueness of groups of Lyons type’, J. Amer. Math. Soc.5 (1992) 75-98. · Zbl 0758.20002
[4] M.Aschbacher and S. D.Smith, ‘On Quillen’s conjecture for the \(p\)‐groups complex’, Ann. of Math. (2)137 (1993) 473-529. · Zbl 0782.20039
[5] J. A.Barmak, Algebraic topology of finite topological spaces and applications, Lecture Notes in Mathematics 2032 (Springer, 2011) xviii+170. · Zbl 1235.55001
[6] J. A.Barmak, ‘On Quillen’s Theorem A for posets’, J. Combin. Theory Ser. A118 (2011) 2445-2453. · Zbl 1234.05237
[7] J. A.Barmak and E. G.Minian, ‘G‐colorings of posets, coverings and presentations of the fundamental group’, Preprint, 2012, https://arxiv.org/abs/1212.6442.
[8] A.Björner, ‘Nerves, fibers and homotopy groups’, J. Combin. Theory Ser. A102 (2003) 88-93. · Zbl 1030.55006
[9] S.Bouc, ‘Homologie de certains ensembles ordonnés’, C. R. Acad. Sci. Paris Sér. I Math.299 (1984) 4952.
[10] K.Brown, Cohomology of groups, Graduate Texts in Mathematics 87 (Springer, Berlin, 1994).
[11] R.Brown, Topology and groupoids (BookSurge PLC, Charleston, SC, 2006). · Zbl 1093.55001
[12] K. M.Das, ‘Simple connectivity of the Quillen complex of GLn(q)’, J. Algebra178 (1995) 239-263. · Zbl 0857.20030
[13] K. M.Das, ‘Some results about the Quillen complex of Sp2n(q)’, J. Algebra209 (1998) 427-445. · Zbl 0936.20017
[14] K. M.Das, ‘The Quillen complex of groups of symplectic type: the characteristic 2 case’, J. Algebra223 (2000) 556-561. · Zbl 1066.20023
[15] G.Ellis, ‘HAP ‐ homological algebra programming ‐ a GAP package, version 1.19’, 2020, https://www.gap‐system.org/Packages/hap.html.
[16] X.Fernández, K. I.Piterman and I. S.Costa, ‘Posets ‐ posets and finite spaces ‐ a GAP package, version 1.0.2’, 2020, https://doi.org/10.5281/zenodo.3851453. · doi:10.5281/zenodo.3851453
[17] D.Gorenstein and R.Lyons, ‘The local structure of finite groups of characteristic 2 type’, Mem. Amer. Math. Soc.42 (1983) vii+731. · Zbl 0519.20014
[18] D.Gorenstein, R.Lyons and R.Solomon, ‘The classification of the finite simple groups’. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs 40 (American Mathematical Society, Providence, RI, 1998) xvi+419. · Zbl 0890.20012
[19] J.Grodal, ‘Endotrivial modules for finite groups via homotopy theory’, Preprint, 2016.
[20] S.Kotlica, ‘Verification of Dade’s conjecture for the Janko group J3’, J. Algebra187 (1997) 579-619. · Zbl 0871.20008
[21] R.Ksontini, ‘Simple connectivity of the Quillen complex of the symmetric group’, J. Combin. Theory, Ser. A103 (2003) 257-279. · Zbl 1040.20018
[22] R.Ksontini, ‘The fundamental group of the Quillen complex of the symmetric group’, J. Algebra282 (2004) 33-57. · Zbl 1060.55002
[23] E. G.Minian and K. I.Piterman, ‘The homotopy types of the posets of \(p\)‐subgroups of a finite group’, Adv. Math.328 (2018) 1217-1233. · Zbl 1494.20078
[24] K. I.Piterman, ‘A stronger reformulation of Webb’s conjecture in terms of finite topological spaces’, J. Algebra527 (2019) 280-305. · Zbl 1467.20042
[25] J.Pulkus and V.Welker, ‘On the homotopy type of the p‐subgroup complex for finite solvable groups’, J. Aust. Math. Soc.69 (2000) 212-228. · Zbl 0986.20022
[26] D.Quillen, ‘Homotopy properties of the poset of non‐trivial \(p\)‐subgroups of a group’, Adv. Math.28 (1978) 101-128. · Zbl 0388.55007
[27] Y.Segev, ‘Simply connected coset complexes for rank 1 groups of Lie type’, Math. Z.217 (1994) 199-214. · Zbl 0829.20032
[28] G. M.Seitz, ‘Generation of finite groups of Lie type’, Trans. Amer. Math. Soc.271 (1982) 351-407. · Zbl 0514.20013
[29] J.Shareshian, ‘Hypergraph matching complexes and Quillen complexes of symmetric groups’, J. Combin. Theory Ser. A106 (2004) 299-314. · Zbl 1059.20019
[30] S. D.Smith, Subgroup complexes, Mathematical Surveys and Monographs 179 (American Mathematical Society, Providence, RI, 2011) xii+364. · Zbl 1239.20001
[31] The GAP Group, ‘GAP - groups, algorithms, and programming, version 4.10.2’, 2019, https://www.gap‐system.org.
[32] J.Thévenaz and P. J.Webb, ‘Homotopy equivalence of posets with a group action’, J. Combin. Theory Ser. A56 (1991) 173-181. · Zbl 0752.05059
[33] K.Uno and S.Yoshiara, ‘Dade’s conjecture for the simple O’Nan group’, J. Algebra249 (2002) 147-185. · Zbl 1009.20018
[34] J. H.Walter, ‘The characterization of finite groups with abelian Sylow 2‐subgroups’, Ann. Math. (2)89 (1969) 405-514. · Zbl 0184.04605
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.