×

Local geometry of Jordan classes in semisimple algebraic groups. (English) Zbl 1507.20025

Let \(G\) be a complex connected reductive algebraic group. A Jordan class in the corresponding Lie algebra \(\mathfrak{g}\) of the element \(x=x_s+x_n\) consists of all elements whose centralisers are \(G\)-conjugate to the centralizer \(\mathfrak{c}_ \mathfrak{g}(x)\). The Jordan classes for \(G\) are defined similarly, but more cumbersomely. Jordan classes in a reductive group or Lie algebra are locally closed, smooth, irreducible \(G\)-stable subsets of elements having similar Jordan decomposition.
It is proved here that the closure of every Jordan class \(J\) in \(G\) at a point \(x\) with Jordan decomposition \(x = rv\) (where the element \(r\) is semisimple, \(v\) is unipotent) is smoothly equivalent to the union of closures of those Jordan classes in the centraliser of \(r\) that are contained in \(J\) and contain \(x\) in their closure. This allows to reduce the local study of Jordan classes around any element to a local study around a unipotent one. For unipotent \(x\) it is proved that the closure of \(J\) around \(x\) is smoothly equivalent to the closure of a Jordan class in \(\mathfrak g\) around \(\exp^{-1} x\). As an applications for some simple and simply connected groups \(G\) a list of smooth sheets in \(G\) and the complete list of regular Jordan classes whose closure is normal and Cohen-Macaulay are given. Then the special case \(G=\mathrm{SL}(n,\mathbf C)\) is considered.

MSC:

20G20 Linear algebraic groups over the reals, the complexes, the quaternions
20G07 Structure theory for linear algebraic groups
17B45 Lie algebras of linear algebraic groups

References:

[1] H.Behnke and P.Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen, Ergebnisse der Mathematik und ihrer Grenzgebiete 51 (Springer, Berlin, 1970). · Zbl 0204.39502
[2] W.Borho, ‘Über Schichten halbeinfacher Lie‐Algebren’, Invent. Math.65 (1981/82) 283-317. · Zbl 0484.17004
[3] K.Bongartz, ‘Schichten von Matrizen sind rationale Varietäten’, Math. Ann.283 (1989) 53-64. · Zbl 0641.14015
[4] W.Borho and H.Kraft, ‘Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen’, Comment. Math. Helv.54 (1979) 61-104. · Zbl 0395.14013
[5] N.Bourbaki, Éléments de Mathématique. Groupes et Algèbres de Lie, Chapitres 4,5, et 6 (Masson, Paris, 1981). · Zbl 0483.22001
[6] M.Brion, ‘Introduction to actions of algebraic groups’, Les cours du CIRM1 (2010) 1-22.
[7] A.Broer, ‘Decomposition varieties in semisimple Lie algebras’, Canad. J. Math.50 (1998) 929-971. · Zbl 0928.17020
[8] G.Carnovale, ‘Lusztig’s partition and sheets (with an appendix by M. Bulois)’, Math. Res. Lett.22 (2015) 645-664. · Zbl 1353.20034
[9] G.Carnovale and F.Esposito, ‘On sheets of conjugacy classes in good characteristic’, Int. Math. Res. Not.2012 (2012) 810-828. · Zbl 1253.20048
[10] G.Carnovale and F.Esposito, ‘Quotients for sheets of conjugacy classes’, Representations and Nilpotent orbits of Lie algebraic systems: in honour of the 75th birthday of Tony Joseph, Progress in Mathematics 330 (eds M.Gorelik (ed.), V.Hinich (ed.) and A.Melnikov (ed.); Springer, Berlin, 2019) 73-90. · Zbl 1436.20089
[11] G.Carnovale and F.Esposito, ‘Affine hyperplane arrangements and Jordan classes’, J. Comb. Algebra, to appear. · Zbl 1511.20192
[12] D.Djokovic, ‘On the exponential map in classical Lie groups’, J. Algebra64 (1980) 76-88. · Zbl 0435.22012
[13] J. M.Douglass and G.Röhrle, ‘Invariants of reflection groups, arrangements, and normality of decomposition classes in Lie algebras’, Compos. Math.148 (2012) 921-930. · Zbl 1253.20038
[14] V. V.Gorbatsevich, A. L.Onishchik and E. B.Vinberg, Lie groups and Lie algebras I: foundations of Lie theory and Lie transformation groups (Springer, Berlin, 1997). (Reprint of the 1993 translation.) · Zbl 0999.17500
[15] A.Grothendieck and M.Raynaud, SGA 1 Revetements Etales et Groupe Fondamental, Lecture Notes in Mathematics 224 (Springer, Berlin, 1971).
[16] W.Hesselink, ‘Singularities in the nilpotent scheme of a classical group’, Trans. Amer. Math. Soc.222 (1976) 1-32. · Zbl 0332.14017
[17] J.Humphreys, Reflection groups and Coxeter groups (Cambridge University Press, Cambridge, 1990). · Zbl 0725.20028
[18] J.Humphreys, Conjugacy classes in semisimple algebraic groups (American Mathematical Society, Providence, RI, 1995). · Zbl 0834.20048
[19] A. E.Im Hof, ‘The sheets in a classical Lie algebra’, PhD Thesis, University of Basel, Basel, 2005.
[20] J. C.Jantzen, ‘Nilpotent orbits in representation theory’, Lie theory, Progress in Mathematics 228 (eds J.‐P.Anker (ed.) and B.Orsted (ed.); Birkhäuser, Boston, MA, 2004) 1-211. · Zbl 1169.14319
[21] H.Kraft and C.Procesi, ‘Minimal singularities in GLn’, Invent. Math.62 (1981) 503-515. · Zbl 0478.14040
[22] I.Losev, ‘Deformations of symplectic singularities and orbit method for semisimple Lie algebras’, Preprint, 2016, arXiv:1605.00592v3.
[23] D.Luna, ‘Slices étales’, Sur les groupes algébriques, Bulletin de la Société Mathématique de France Mémoire 33 (Société Mathématique de France, Paris, 1973) 81-105. · Zbl 0286.14014
[24] G.Lusztig, ‘Intersection cohomology complexes on a reductive group’, Invent. Math.75 (1984) 205-272. · Zbl 0547.20032
[25] G.Lusztig, ‘Classification of unipotent representation of simple \(p\)‐adic groups’, Int. Math. Res. Not.11 (1995) 517-589. · Zbl 0872.20041
[26] G.Lusztig, ‘On conjugacy classes in a reductive group’, Representations of reductive groups, Progress in Mathematics 312 (eds M.Nevins (ed.) and P.Trapa (ed.); Birkhäuser-Springer, Boston-Berlin, 2015) 333-363. · Zbl 1343.20050
[27] G.Lusztig and N.Spaltenstein, ‘Induced unipotent classes’, J. Lond. Math. Soc. (2)19 (1979) 41-52. · Zbl 0407.20035
[28] D.Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete Neue Folge Band 34 (Springer, Berlin-New York, 1965). · Zbl 0147.39304
[29] T.Nôno, ‘On the singularity of general linear groups’, J. Sci. Hiroshima Univ. (A)20 (1957) 115-123. · Zbl 0079.04204
[30] T.Nôno, ‘Note on the paper “On the singularity of general linear groups”, J. Sci. Hiroshima Univ. (A)21 (1958) 163-166. · Zbl 0083.02201
[31] D.Peterson, ‘Geometry of the adjoint representation of a complex semisimple Lie algebra’, Harvard Thesis, 1978.
[32] R. W.Richardson, ‘Normality of \(G\)‐stable subvarieties of a semisimple Lie algebra’, Algebraic groups Utrecht 1986, Lecture Notes in Mathematics 1271 (eds A. M.Cohen (ed.), W. H.Hesselink (ed.), W. L. J.van der Kallen (ed.) and J. R.Strooker (ed.); Springer, New York, NY, 1987). · Zbl 0619.00008
[33] J. P.Serre, ‘Geometrie algebrique et geometrie analytique’, Ann. Inst. Fourier6 (1956) 1-42. · Zbl 0075.30401
[34] E.Sommers, ‘A generalization of the Bala‐Carter theorem for nilpotent orbits’, Int. Math. Res. Not.11 (1998) 539-562. · Zbl 0909.22014
[35] The Stacks project authors, ‘The Stacks project’, 2019, https://stacks.math.columbia.edu.
[36] P.Tauvel and R.Yu, Lie algebras and algebraic groups, Springer Monographs in Mathematics (Springer, Berlin, 2005). · Zbl 1068.17001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.