×

Thermo-elasto-plastic phase-field modelling of mechanical behaviours of sintered nano-silver with randomly distributed micro-pores. (English) Zbl 1506.74068

Summary: Nano-silver paste is an emerging lead-free bonding material in power electronics, and has excellent mechanical properties, thermal conductivity and long-term reliability. However, it is extremely challenging to model the mechanical and failure behaviours of sintered nano-silver paste due to its random micro-porous structures and the coupled thermomechanical loading conditions. In this study, a novel computational framework was proposed to generate the random micro-porous structures and simulate their effects on mechanical properties and fracture behaviour based on the one-cut gaussian random field model and the thermo-elasto-plastic phase-field model. The elastic modulus, ultimate tensile strength and strain to failure are computed statistically, showing good agreement with the experimental results. Further, the framework was applied to model the fracture of sintered nano-silver paste under thermal cyclic conditions, demonstrating the formation of distinctive crack patterns and complex crack networks. The cracking behaviours observed in the experiments and simulations are remarkably similar to each other. The framework was implemented within Abaqus via a combination of subroutines and Python scripts, automating the process of model generation and subsequent computation. This study provides an efficient and reliable approach to simulate the mechanical and failure behaviours of sintered nano-silver paste with random micro-porous structures.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74F05 Thermal effects in solid mechanics

Software:

ABAQUS; FEAPpv; Python

References:

[1] Manikam, V. R.; Cheong, K. Y., Die attach materials for high temperature applications: A review, IEEE Trans. Compon. Packag. Manuf. Technol., 1, 457-478 (2011)
[2] Chen, C. T.; Choe, C. Y.; Zhang, Z.; Kim, D. J.; Suganuma, K., Low-stress design of bonding structure and its thermal shock performance (-50 to 250 A degrees C) in SiC/DBC power die-attached modules, J. Mater. Sci. Mater Electron., 29, 14335-14346 (2018)
[3] Zhang, H. Q.; Wang, W. G.; Bai, H. L.; Zou, G. S.; Liu, L.; Peng, P.; Guo, W., Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications, J. Alloy. Compd., 774, 487-494 (2019)
[4] Chen, C.; Choe, C.; Kim, D.; Suganuma, K., Lifetime prediction of a SiC power module by Micron/Submicron Ag sinter joining based on fatigue, creep and thermal properties from room temperature to high temperature, J. Electron. Mater. (2020)
[5] Paknejad, S. A.; Mannan, S. H., Review of silver nanoparticle based die attach materials for high power/temperature applications, Microelectron. Reliab., 70, 1-11 (2017)
[6] Soichi, S.; Suganuma, K., Low-temperature and low-pressure die bonding using thin ag-flake and ag-particle pastes for power devices, IEEE Trans. Compon. Pack. Manuf. Technol., 3, 923-929 (2013)
[7] Alarifi, H.; Hu, A.; Yavuz, M.; Zhou, Y. N., Silver nanoparticle paste for low-temperature bonding of copper, J. Electron. Mater., 40, 1394-1402 (2011)
[8] Siow, K. S., Die-Attach Materials for High Temperature Applications in Microelectronics Packaging (2019), Springer
[9] Yang, F.; Zhu, W.; Wu, W.; Ji, H.; Hang, C.; Li, M., Microstructural evolution and degradation mechanism of SiC-Cu chip attachment using sintered nano-Ag paste during high-temperature ageing, J. Alloy. Compd., 846, Article 156442 pp. (2020)
[10] Liu, Y.; Zhang, H.; Wang, L.; Fan, X.; Zhang, G.; Sun, F., Effect of sintering pressure on the porosity and the shear strength of the pressure-assisted silver sintering bonding, IEEE Trans. Device Mater. Reliab., 1 (2018)
[11] Qin, F.; Hu, Y.; Dai, Y.; An, T.; Chen, P.; Gong, Y.; Yu, H., Crack effect on the equivalent thermal conductivity of porously sintered silver, J. Electron. Mater., 49, 5994-6008 (2020)
[12] Weber, C.; Hutter, M.; Schmitz, S.; Lang, K., Dependency of the porosity and the layer thickness on the reliability of Ag sintered joints during active power cycling, (2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (2015)), 1866-1873
[13] Kimura, R.; Kariya, Y.; Mizumura, N.; Sasaki, K., Effect of sintering temperature on fatigue crack propagation rate of sintered Ag nanoparticles, Mater. Trans., 59, 612-619 (2018)
[14] Wakamoto, K.; Mochizuki, Y.; Otsuka, T.; Nakahara, K.; Namazu, T., Tensile mechanical properties of sintered porous silver films and their dependence on porosity, Japan. J. Appl. Phys., 58, SDDL08 (2019)
[15] Wereszczak, A. A.; Vuono, D. J.; Wang, H.; Ferber, M. K.; Liang, Z., Properties of Bulk Sintered Silver As a Function of Porosity, in, Oak Ridge National Lab.(ORNL) (2012), Oak Ridge: Oak Ridge TN (United States
[16] Carr, J.; Milhet, X.; Gadaud, P.; Boyer, S. A.E.; Thompson, G. E.; Lee, P., Quantitative characterization of porosity and determination of elastic modulus for sintered micro-silver joints, J. Mater Process. Technol., 225, 19-23 (2015)
[17] Yao, Y.; Huang, Q.; Wang, S., Effects of porosity and pore microstructure on the mechanical behavior of nanoporous silver, Mater. Today Commun., Article 101236 pp. (2020)
[18] Chen, Z.; Wang, X.; Giuliani, F.; Atkinson, A., Microstructural characteristics and elastic modulus of porous solids, Acta Mater., 89, 268-277 (2015)
[19] Soyarslan, C.; Pradas, M.; Bargmann, S., Effective elastic properties of 3D stochastic bicontinuous composites, Mech. Mater., 137, Article 103098 pp. (2019)
[20] Vel, S. S.; Goupee, A. J., Multiscale thermoelastic analysis of random heterogeneous materials: Part I: Microstructure characterization and homogenization of material properties, Comput. Mater. Sci., 48, 22-38 (2010)
[21] Gillman, A.; Roelofs, M.; Matouš, K.; Kouznetsova, V.; van der Sluis, O.; van Maris, M., Microstructure statistics-property relations of silver particle-based interconnects, Mater. Des., 118, 304-313 (2017)
[22] Fang, J.; Wu, C.; Rabczuk, T.; Wu, C.; Ma, C.; Sun, G.; Li, Q., Phase field fracture in elasto-plastic solids: Abaqus implementation and case studies, Theor. Appl. Fract. Mech., 103, Article 102252 pp. (2019)
[23] Wang, T.; Ye, X.; Liu, Z.; Liu, X.; Chu, D.; Zhuang, Z., A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration, Comput. Mech., 65, 1305-1321 (2020) · Zbl 1464.74153
[24] Miehe, C.; Schanzel, L. M.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Engrg., 294, 449-485 (2015) · Zbl 1423.74838
[25] Dittmann, M.; Aldakheel, F.; Schulte, J.; Schmidt, F.; Krüger, M.; Wriggers, P.; Hesch, C., Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids, Comput. Methods Appl. Mech. Engrg., 361, Article 112730 pp. (2020) · Zbl 1442.74040
[26] Krüger, M.; Dittmann, M.; Aldakheel, F.; Härtel, A.; Wriggers, P.; Hesch, C., Porous-ductile fracture in thermo-elasto-plastic solids with contact applications, Comput. Mech., 65, 941-966 (2020) · Zbl 1462.74143
[27] Miehe, C.; Hofacker, M.; Schänzel, L. M.; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522 (2015) · Zbl 1423.74837
[28] Miehe, C.; Dal, H.; Schanzel, L. M.; Raina, A., A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles, Internat. J. Numer. Methods Engrg., 106, 683-711 (2016) · Zbl 1352.74116
[29] Nguyen, T. T.; Waldmann, D.; Bui, T. Q., Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials, Comput. Methods Appl. Mech. Engrg., 348, 1-28 (2019) · Zbl 1440.74361
[30] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2016) · Zbl 1425.74423
[31] Ehlers, W.; Luo, C., A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Comput. Methods Appl. Mech. Engrg., 315, 348-368 (2017) · Zbl 1439.74107
[32] Zhou, S.; Zhuang, X.; Rabczuk, T., Phase-field modeling of fluid-driven dynamic cracking in porous media, Comput. Methods Appl. Mech. Engrg., 350, 169-198 (2019) · Zbl 1441.74222
[33] Cho, J.; Lee, K.-S., Finite element simulation of crack propagation based on phase field theory, J. Mech. Sci. Technol., 27, 3073-3085 (2013)
[34] Pillai, U.; Heider, Y.; Markert, B., A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine, Comput. Mater. Sci., 153, 36-47 (2018)
[35] Carlsson, J.; Isaksson, P., A statistical geometry approach to length scales in phase field modelling of fracture and strength of porous microstructures, Int. J. Solids Struct. (2020)
[36] Schaal, M.; Klingler, M.; Wunderle, B., Silver sintering in power electronics: The state of the art in material characterization and reliability testing, (2018 7th Electronic System-Integration Technology Conference (ESTC) (2018)), 1-18
[37] Liu, C.; Mohn, F.; Schuderer, J.; Torresin, D., Novel large-area attachment for high-temperature power electronics module application, (2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (2017)), 1547-1552
[38] Nishimoto, S.; Moeini, S. A.; Ohashi, T.; Nagatomo, Y.; McCluskey, P., Novel silver die-attach technology on silver pre-sintered DBA substrates for high temperature applications, Microelectron. Reliab., 87, 232-237 (2018)
[39] Liu, P.; Chen, G.-F., Porous Materials: Processing and Applications (2014), Elsevier
[40] Durrett, R., Probability: Theory and Examples (2019), Cambridge university press · Zbl 1440.60001
[41] Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties (2013), Springer Science & Business Media · Zbl 0988.74001
[42] Roberts, A. P.; Teubner, M., Transport properties of heterogeneous materials derived from Gaussian random fields: bounds and simulation, Phys. Rev. E, 51, 4141 (1995)
[43] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014
[44] Molnár, G.; Gravouil, A., 2d and 3D abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem. Anal. Des., 130, 27-38 (2017)
[45] Anderson, O. L., Derivation of wachtman’s equation for the temperature dependence of elastic moduli of oxide compounds, Phys. Rev., 144, 553-557 (1966)
[46] Wachtman, J. B.; Tefft, W. E.; Lam, D. G.; Apstein, C. S., Exponential temperature dependence of Young’s modulus for several oxides, Phys. Rev., 122, 1754-1759 (1961)
[47] Molnar, G.; Gravouil, A.; Seghir, R.; Rethore, J., An open-source abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation, Comput. Methods Appl. Mech. Engrg., 365, Article 113004 pp. (2020) · Zbl 1442.74211
[48] Mises, R. V., Mechanik der festen Körper im plastisch-deformablen Zustand, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913, 582-592 (1913) · JFM 44.0918.06
[49] Bammann, D. J., Modeling temperature and strain rate dependent large deformations of metals, Appl. Mech. Rev., 43, S312-S319 (1990)
[50] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method for Solid and Structural Mechanics (2005), Elsevier · Zbl 1084.74001
[51] Sugiura, K.; Iwashige, T.; Tsuruta, K.; Chen, C. T.; Nagao, S.; Funaki, T.; Suganuma, K., Reliability evaluation of SiC power module with sintered Ag die attach and stress-relaxation structure, IEEE Trans. Compon. Pack. Manuf. Technol., 9, 609-615 (2019)
[52] Caccuri, V.; Milhet, X.; Gadaud, P.; Bertheau, D.; Gerland, M., Mechanical properties of sintered Ag as a new material for die bonding: influence of the density, Journal of electronic materials, 43, 4510-4514 (2014)
[53] Gadaud, P.; Caccuri, V.; Bertheau, D.; Carr, J.; Milhet, X., Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution, Mater. Sci. Eng. A, 669, 379-386 (2016)
[54] Milhet, X.; Gadaud, P.; Caccuri, V.; Bertheau, D.; Mellier, D.; Gerland, M., Influence of the porous microstructure on the elastic properties of sintered Ag paste as replacement material for die attachment, J. Electron. Mater., 44, 3948-3956 (2015)
[55] Herboth, T.; Guenther, M.; Fix, A.; Wilde, J., Failure mechanisms of sintered silver interconnections for power electronic applications, (2013 IEEE 63rd Electronic Components and Technology Conference (2013), IEEE), 1621-1627
[56] Dai, J.; Li, J.; Agyakwa, P.; Corfield, M.; Johnson, C. M., Comparative thermal and structural characterization of sintered nano-silver and high-lead solder die attachments during power cycling, IEEE Trans. Device Mater. Reliab., 18, 256-265 (2018)
[57] Hu, B.; Gonzalez, J. O.; Ran, L.; Ren, H.; Zeng, Z.; Lai, W.; Gao, B.; Alatise, O.; Lu, H.; Bailey, C.; Mawby, P., Failure and reliability analysis of a SiC power module based on stress comparison to a si device, IEEE Trans. Device Mater. Reliab., 17, 727-737 (2017)
[58] Agyakwa, P.; Dai, J.; Li, J.; Mouawad, B.; Yang, L.; Corfield, M.; Johnson, C., Three-dimensional damage morphologies of thermomechanically deformed sintered nanosilver die attachments for power electronics modules, J. Microsc. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.