×

Mehler integral transform associated with Jacobi functions with respect to the dual variable. (English) Zbl 0889.43001

The paper deals with a Mehler representation for the Jacobi functions \(\varphi_\lambda^{(\alpha,\beta)}(t)\) with respect to the dual variable \(\lambda\). This representation is used to define a pair of dual transforms of Mehler type: \(\chi_{\alpha,\beta}\) and its transposed \(^t\chi_{\alpha,\beta}\). Two second order difference operators \(P_{\alpha,\beta}\) and \(Q\) are studied, such that the Jacobi function \(\varphi_\lambda^{(\alpha,\beta)}(t)\) is an eigenfunction of \(P_{\alpha,\beta}\) with respect to the dual variable, and \(\chi_{\alpha,\beta}\) and its transposed \(^t\chi_{\alpha,\beta}\) are permutation operators between \(P_{\alpha,\beta}\) and \(Q\). The authors study some spaces of functions on which both transforms are isomorphisms and they find inversion formulae for these transforms.
Reviewer: N.Bozhinov (Sofia)

MSC:

43A32 Other transforms and operators of Fourier type
44A15 Special integral transforms (Legendre, Hilbert, etc.)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Askey, R., Orthogonal polynomials and special functions, Regional Conference Series in Applied Mathematics (1975), SIAM: SIAM Philadelphia · Zbl 0298.26010
[2] Askey, R.; Gasper, G., Jacobi polynomial expansions of Jacobi polynomial with nonnegative coefficients, Math. Proc. Cambridge Philos. Soc., 70, 243-255 (1971) · Zbl 0217.11402
[3] Ben Salem, N., Convolution semigroups and central limit theorem associated with a dual convolution structure, J. Theoret. Probab., 7, 417-436 (1994) · Zbl 0796.60010
[4] Besicovitch, A. S., Almost Periodic Functions (1954), Dover: Dover New York · Zbl 0004.25303
[5] Bloom, W. R.; Heyer, H., Harmonic analysis of probability measures on hypergroups, (Bauer, H.; Kazdan, J. L.; Zehnder, E., de Gruyter Studies in Mathematics (1994), de Gruyter: de Gruyter Berlin/New York) · Zbl 0828.43005
[6] Flensted-Jensen, M., Paley-Wiener type theorems for a differential operator connected with symmetric spaces, Ark. Mat., 10, 143-162 (1972) · Zbl 0233.42012
[7] Flensted-Jensen, M.; Koornwinder, T. H., The convolution structure for Jacobi function expansions, Ark. Mat., 11, 245-262 (1973) · Zbl 0267.42009
[8] Flensted-Jensen, M.; Koornwinder, T. H., Jacobi functions: The addition formula and the positivity of dual convolution structure, Ark. Mat., 17, 139-151 (1979) · Zbl 0409.33009
[9] Gasper, G., Linearization of the product formula of Jacobi polynomials, I, II, Canad. J. Math., 22, 171-175 (1970) · Zbl 0191.35002
[10] Jewett, R. I., Spaces with an abstract convolution of measures, Adv. in Math., 18, 1-101 (1975) · Zbl 0325.42017
[11] Koornwinder, T. H., A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat., 13, 145-159 (1975) · Zbl 0303.42022
[12] Koornwinder, T. H., Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. (2), 18, 101-114 (1978) · Zbl 0386.33009
[13] Koornwinder, T. H., Jacobi functions and analysis on noncompact semi-simple Lie groups, Special Functions: Group Theoretical Aspects and Applications. Special Functions: Group Theoretical Aspects and Applications, Math. Appl. (1984), Reidel: Reidel Dordrecht/Boston/Lancaster, p. 1-85 · Zbl 0584.43010
[14] Stein, E. M.; Weiss, G., Fourier Analysis on Euclidean Spaces (1971), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0232.42007
[15] Szego, G., Orthogonal Polynomials. Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23 (1975), Amer. Math. Soc: Amer. Math. Soc Providence
[16] Titchmarsh, E. C., The Theory of Functions (1939), Oxford Univ. Press: Oxford Univ. Press London · Zbl 0022.14602
[17] Trimèche, K., Transformation intégralede Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,+∞), J. Math. Pures Appl., 60, 51-98 (1981) · Zbl 0416.44002
[18] Trimèche, K., Transmutation operators and mean periodic functions associated with differential operators, Math. Rep., 4, 1-282 (1988) · Zbl 0875.43001
[19] Trimèche, K., Inversion of the Lions transmutation operators by using generalized wavelets, Appl. Comput. Harmonic Anal., 4, 1-16 (1997) · Zbl 0872.34059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.