×

Practical Bayesian tomography. (English) Zbl 1456.81040

Summary: In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby and by Ferrie, to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.

MSC:

81P18 Quantum state tomography, quantum state discrimination
62F15 Bayesian inference
62C10 Bayesian problems; characterization of Bayes procedures

References:

[1] Huszár F and Houlsby N M T 2012 Adaptive Bayesian quantum tomography Phys. Rev. A 85 052120 · doi:10.1103/PhysRevA.85.052120
[2] Ferrie C 2014 Quantum model averaging New J. Phys.16 093035 · Zbl 1451.81052 · doi:10.1088/1367-2630/16/9/093035
[3] Cramer M, Plenio M B, Flammia S T, Somma R, Gross D, Bartlett S D, Landon-Cardinal O, Poulin D and Liu Y-K 2010 Efficient quantum state tomography Nat. Commun.1 149 · doi:10.1038/ncomms1147
[4] Wiebe N, Granade C and Cory D G 2015 Quantum bootstrapping via compressed quantum Hamiltonian learning New J. Phys.17 022005 · Zbl 1452.68162 · doi:10.1088/1367-2630/17/2/022005
[5] Holzäpfel M, Baumgratz T, Cramer M and Plenio M B 2015 Scalable reconstruction of unitary processes and Hamiltonians Phys. Rev. A 91 042129 · doi:10.1103/PhysRevA.91.042129
[6] Newton R G and Young B-I 1968 Measurability of the spin density matrix Ann. Phys., NY49 393 · doi:10.1016/0003-4916(68)90035-3
[7] Band W and Park J L 1970 The empirical determination of quantum states Found. Phys.1 133 · doi:10.1007/BF00708723
[8] Band W and Park J L 1979 Quantum state determination: quorum for a particle in one dimension Am. J. Phys.47 188 · doi:10.1119/1.11870
[9] Hradil Z 1997 Quantum-state estimation Phys. Rev.55 R1561 · doi:10.1103/PhysRevA.55.R1561
[10] Christandl M and Renner R 2012 Reliable quantum state tomography Phys. Rev. Lett.109 120403 · doi:10.1103/PhysRevLett.109.120403
[11] Blume-Kohout R 2012 Robust error bars for quantum tomography (arXiv:1202.5270)
[12] Shang J, Ng H K, Sehrawat A, Li X and Englert B-G 2013 Optimal error regions for quantum state estimation New J. Phys.15 123026 · Zbl 1451.81134 · doi:10.1088/1367-2630/15/12/123026
[13] Guţă M, Kypraios T and Dryden I 2012 Rank-based model selection for multiple ions quantum tomography New J. Phys.14 105002 · Zbl 1448.81077 · doi:10.1088/1367-2630/14/10/105002
[14] van Enk S J and Blume-Kohout R 2013 When quantum tomography goes wrong: drift of quantum sources and other errors New J. Phys.15 025024 · Zbl 1451.81057 · doi:10.1088/1367-2630/15/2/025024
[15] Blume-Kohout R 2010 Hedged maximum likelihood estimation Phys. Rev. Lett.105 200504 · doi:10.1103/physrevlett.105.200504
[16] Gross D, Liu Y-K, Flammia S T, Becker S and Eisert J 2010 Quantum state tomography via compressed sensing Phys. Rev. Lett.105 150401 · doi:10.1103/PhysRevLett.105.150401
[17] Flammia S T, Gross D, Liu Y-K and Eisert J 2012 Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators New J. Phys.14 095022 · Zbl 1448.81075 · doi:10.1088/1367-2630/14/9/095022
[18] Jones K 1991 Principles of quantum inference Ann. Phys., N.Y.207 140 · doi:10.1016/0003-4916(91)90182-8
[19] Jones K 1991 Quantum limits to information about states for finite dimensional Hilbert space J. Phys. A: Math. Gen.24 121 · Zbl 0736.46056 · doi:10.1088/0305-4470/24/1/021
[20] Jones K 1994 Fundamental limits upon the measurement of state-vectors Phys. Rev. A 50 3682 · doi:10.1103/PhysRevA.50.3682
[21] Slater P B 1995 Quantum coin-tossing in a Bayesian Jeffreys framework Phys. Lett. A 266 66 · doi:10.1016/0375-9601(95)00601-X
[22] Derka R, Buzek V, Adam G and Knight P L 1996 From quantum Bayesian inference to quantum tomography J. Fine Mech. Opt.11-12 341 (arXiv:quant-ph/9701029)
[23] Bužek V, Derka R, Adam G and Knight P L 1998 Reconstruction of quantum states of spin systems: from quantum Bayesian inference to quantum tomography Ann. Phys., NY266 454 · Zbl 0936.81003 · doi:10.1006/aphy.1998.5802
[24] Schack R, Brun T A and Caves C M 2001 Quantum Bayes rule Phys. Rev.64 014305 · doi:10.1103/PhysRevA.64.014305
[25] Blume-Kohout R and Hayden P 2006 Accurate quantum state estimation via ‘Keeping the experimeintalist honest’ (arXiv:quant-ph/0603116)
[26] Blume-Kohout R 2010b Optimal, reliable estimation of quantum states New J. Phys.12 043034 · Zbl 1375.81065 · doi:10.1088/1367-2630/12/4/043034
[27] Ferrie C and Kueng R 2015 Have you been using the wrong estimator? These guys bound average fidelity using this one weird trick von Neumann didn’t want you to know New J. Phys.17 123013
[28] Kravtsov K S, Straupe S S, Radchenko I V, Houlsby N M T, Huszar F and Kulik S P 2013 Experimental adaptive Bayesian tomography Phys. Rev. A 87 062122 · doi:10.1103/PhysRevA.87.062122
[29] Ferrie C 2014b High posterior density ellipsoids of quantum states New J. Phys.16 023006 · Zbl 1451.81051 · doi:10.1088/1367-2630/16/2/023006
[30] Wiebe N, Granade C, Ferrie C and Cory D 2014 Quantum Hamiltonian learning using imperfect quantum resources Phys. Rev. A 89 042314 · doi:10.1103/PhysRevA.89.042314
[31] Struchalin G, Pogorelov I, Straupe S, Kravtsov K, Radchenko I and Kulik S 2015 Experimental adaptive quantum tomography of two-qubit states Phys. Rev.93 012103 · doi:10.1103/PhysRevA.93.012103
[32] Doucet A and Johansen A M 2009 A Tutorial on Particle Filtering and Smoothing: Fifteen Years Later (Oxford: Oxford: University Press)
[33] Doucet A, Godsill S and Andrieu C 2000 On sequential Monte Carlo sampling methods for Bayesian filtering Stat. Comput.10 197 · doi:10.1023/A:1008935410038
[34] Audenaert K M R and Scheel S 2009 Quantum tomographic reconstruction with error bars: a Kalman filter approach New J. Phys.11 023028 · doi:10.1088/1367-2630/11/2/023028
[35] Ince D C, Hatton L and Graham-Cumming J 2012 The case for open computer programs Nature482 485 · doi:10.1038/nature10836
[36] Borot G and Nadal C 2012 Purity distribution for generalized random bures mixed states J. Phys. A: Math. Theor.45 075209 · Zbl 1239.81022 · doi:10.1088/1751-8113/45/7/075209
[37] Schwarz L and van Enk S J 2011 Detecting the drift of quantum sources: not the de Finetti theorem Phys. Rev. Lett.106 180501 · doi:10.1103/PhysRevLett.106.180501
[38] Langford N K 2013 Errors in quantum tomography: diagnosing systematic versus statistical errors New J. Phys.15 035003 · Zbl 1451.81053 · doi:10.1088/1367-2630/15/3/035003
[39] Shulman M D, Harvey S P, Nichol J M, Bartlett S D, Doherty A C, Umansky V and Yacoby A 2014 Suppressing qubit dephasing using real-time Hamiltonian estimation Nat. Commun.5 5156 · doi:10.1038/ncomms6156
[40] Fogarty M A, Veldhorst M, Harper R, Yang C H, Bartlett S D, Flammia S T and Dzurak A S 2015 Nonexponential fidelity decay in randomized benchmarking with low-frequency noise Phys. Rev. A 92 022326 · doi:10.1103/PhysRevA.92.022326
[41] Granade C E 2015 Characterization, verification and control for large quantum systems PhD Thesis University of Waterloo (http://hdl.handle.net/10012/9217)
[42] The third paragraph on page 22 ofBlume-Kohout R, Gamble J K, Nielsen E, Maunz P, Scholten T and Rudinger K 2015 Turbocharging quantum tomography Technical Report Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) (SAND2015-0224)
[43] Granade C, Ferrie C et al 2012 QInfer: library for statistical inference in quantum information (http://github.com/csferrie/python-qinfer)
[44] Johansson J R, Nation P D and Nori F 2013 QuTiP 2: a Python framework for the dynamics of open quantum systems Comput. Phys. Commun.184 1234 · doi:10.1016/j.cpc.2012.11.019
[45] Casagrande S and Granade C 2013 InstrumentKit: Python package for interacting with laboratory equipment (https://github.com/Galvant/InstrumentKit)
[46] Banerjee A, Guo X and Wang H 2005 On the optimality of conditional expectation as a Bregman predictor IEEE Trans. Inf. Theory51 2664 · Zbl 1284.94025 · doi:10.1109/TIT.2005.850145
[47] Granade C E, Ferrie C, Wiebe N and Cory D G 2012b Robust online Hamiltonian learning New J. Phys.14 103013 · Zbl 1448.68373 · doi:10.1088/1367-2630/14/10/103013
[48] Wiebe N, Granade C, Kapoor A and Svore K M 2015 Bayesian interference via rejection filtering (arXiv:1511.06458)
[49] Doucet A and Johansen A M 2011 A tutorial on particle filtering and smoothing: fifteen years later Handbook of Nonlinear Filtering (Oxford: Oxford University Press) · Zbl 1513.60043
[50] Wasserman L 2013 LOST CAUSES IN STATISTICS: II. Noninformative Priors (http://normaldeviate.wordpress.com/2013/07/13/lost-causes-in-statistics-ii-noninformative-priors)
[51] Osipov V A, Sommers H-J and Zyczkowski K 2010 Random Bures mixed states and the distribution of their purity J. Phys. A: Math. Theor.43 055302 · Zbl 1186.81033 · doi:10.1088/1751-8113/43/5/055302
[52] Zyczkowski K and Sommers H-J 2001 Induced measures in the space of mixed quantum states J. Phys. A: Math. Gen.34 7111 · Zbl 1031.81011 · doi:10.1088/0305-4470/34/35/335
[53] Mezzadri F 2007 How to generate random matrices from the classical compact groups Not. Am. Math. Soc.54 592 · Zbl 1156.22004
[54] Bruzda W, Cappellini V, Sommers H-J and Źyczkowski K 2009 Random quantum operations Phys. Lett. A 373 320 · Zbl 1227.81019 · doi:10.1016/j.physleta.2008.11.043
[55] Veitch V, Mousavian S A H, Gottesman D and Emerson J 2014 The resource theory of stabilizer quantum computation New J. Phys.16 013009 · Zbl 1451.81184 · doi:10.1088/1367-2630/16/1/013009
[56] Granade C, Combes J and Cory D G 2015a Practical Bayesian tomography supplementary video: recovery from ‘bad’ priors (https://goo.gl/gpb94w)
[57] Isard M and Blake A 1998 CONDENSATION-conditional density propagation for visual tracking Int. J. Comput. Vis.29 5 · doi:10.1023/A:1008078328650
[58] Jasra A and Doucet A 2009 Sequential Monte Carlo methods for diffusion processes Proc. R. Soc. A 465 3709 · Zbl 1195.60105 · doi:10.1098/rspa.2009.0206
[59] Schirmer S G and Oi D K L 2010 Quantum system identification by Bayesian analysis of noisy data: Beyond Hamiltonian tomography Laser Phys.20 1203 · doi:10.1134/S1054660X10090434
[60] Sergeevich A, Chandran A, Combes J, Bartlett S D and Wiseman H M 2011 Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis Phys. Rev. A 84 052315 · doi:10.1103/PhysRevA.84.052315
[61] Granade C, Combes J and Cory D G 2015 Practical Bayesian tomography supplementary video: state-space state tomography (https://goo.gl/mkibti)
[62] Faist P and Renner R 2015 Practical, reliable error bars in quantum tomography (arXiv:1509.06763)
[63] Chuang I L and Nielsen M A 1997 Prescription for experimental determination of the dynamics of a quantum black box J. Mod. Opt.44 2455 · doi:10.1080/09500349708231894
[64] Choi M-D 1975 Completely positive linear maps on complex matrices Linear Algebr. Appl.10 285 · Zbl 0327.15018 · doi:10.1016/0024-3795(75)90075-0
[65] Jamiołkowski A 1972 Linear transformations which preserve trace and positive semidefiniteness of operators Rep. Math. Phys.3 275 · Zbl 0252.47042 · doi:10.1016/0034-4877(72)90011-0
[66] Wood C J, Biamonte J D and Cory D G 2015 Tensor networks and graphical calculus for open quantum systems Quantum Inf. Comput.15 0579 (www.rintonpress.com/journals/qiconline.html#v15n910)
[67] Wood C 2015 Initialization and characterization of open quantum systems PhD Thesis University of Waterloo (http://hdl.handle.net/10012/9557)
[68] Ringbauer M, Wood C J, Modi K, Gilchrist A, White A G and Fedrizzi A 2015 Characterizing quantum dynamics with initial system-environment correlations Phys. Rev. Lett.114 090402 · doi:10.1103/PhysRevLett.114.090402
[69] Altepeter J B, Branning D, Jeffrey E, Wei T C, Kwiat P G, Thew R T, O’Brien J L, Nielsen M A and White A G 2003 Ancilla-assisted quantum process tomography Phys. Rev. Lett.90 193601 · doi:10.1103/PhysRevLett.90.193601
[70] Watrous J 2013 CS 766: Theory of Quantum Information(Lecture Notes) (http://as.uwaterloo.ca/ watrous/TQI/)
[71] Granade C 2015 Robust online Hamiltonian learning: multi-cos2 model resampling (https://goo.gl/CR9Dtr)
[72] Stenberg M P, Sanders Y R and Wilhelm F K 2014 Efficient estimation of resonant coupling between quantum systems Phys. Rev. Lett.113 210404 · doi:10.1103/PhysRevLett.113.210404
[73] Wiebe N, Granade C, Ferrie C and Cory D 2014b Hamiltonian learning and certification using quantum resources Phys. Rev. Lett.112 190501 · doi:10.1103/PhysRevLett.112.190501
[74] Svensson A 2013 The particle filter explained without equations (https://goo.gl/VjZJVm)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.