×

Statistical benchmark for bosonsampling. (English) Zbl 1456.81152

Summary: Boson samplers – set-ups that generate complex many-particle output states through the transmission of elementary many-particle input states across a multitude of mutually coupled modes – promise the efficient quantum simulation of a classically intractable computational task, and challenge the extended Church-Turing thesis, one of the fundamental dogmas of computer science. However, as in all experimental quantum simulations of truly complex systems, one crucial problem remains: how to certify that a given experimental measurement record unambiguously results from enforcing the claimed dynamics, on bosons, fermions or distinguishable particles? Here we offer a statistical solution to the certification problem, identifying an unambiguous statistical signature of many-body quantum interference upon transmission across a multimode, random scattering device. We show that statistical analysis of only partial information on the output state allows to characterise the imparted dynamics through particle type-specific features of the emerging interference patterns. The relevant statistical quantifiers are classically computable, define a falsifiable benchmark for BosonSampling, and reveal distinctive features of many-particle quantum dynamics, which go much beyond mere bunching or anti-bunching effects.

MSC:

81P68 Quantum computation
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81V73 Bosonic systems in quantum theory

References:

[1] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information · Zbl 1288.81001 · doi:10.1017/CBO9780511976667
[2] Aaronson S and Arkhipov A 2013 The computational complexity of linear optics Theory of Computing9 143-252 · Zbl 1298.81046 · doi:10.4086/toc.2013.v009a004
[3] Lanting T et al 2014 Entanglement in a quantum annealing processor Phys. Rev. X 4 021041 · doi:10.1103/PhysRevX.4.021041
[4] Deutsch D 1985 Quantum theory, the church-turing principle and the universal quantum computer Proc. R. Soc. Lond. A 400 97-117 · Zbl 0900.81019 · doi:10.1098/rspa.1985.0070
[5] Moore C and Mertens S 2011 The Nature of Computation · Zbl 1237.68004 · doi:10.1093/acprof:oso/9780199233212.001.0001
[6] Broome M A, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph T C and White A G 2013 Photonic boson sampling in a tunable circuit Science339 794-8 · doi:10.1126/science.1231440
[7] Crespi A, Osellame R, Ramponi R, Brod D J, Galvão E F, Spagnolo N, Vitelli C, Maiorino E, Mataloni P and Sciarrino F 2013 Integrated multimode interferometers with arbitrary designs for photonic boson sampling Nat. Photon.7 545-9 · doi:10.1038/nphoton.2013.112
[8] Ralph T C 2013 Quantum computation: Boson sampling on a chip Nat. Photon.7 514-5 · doi:10.1038/nphoton.2013.175
[9] Spagnolo N et al 2014 Experimental validation of photonic boson sampling Nat. Photon.8 615-20 · doi:10.1038/nphoton.2014.135
[10] Spring J B et al 2013 Boson sampling on a photonic chip Science339 798-801 · doi:10.1126/science.1231692
[11] Tillmann M, Dakić B, Heilmann R, Nolte S, Szameit A and Walther P 2013 Experimental boson sampling Nat. Photon.7 540-4 · doi:10.1038/nphoton.2013.102
[12] Hong C K, Ou Z Y and Mandel L 1987 Measurement of subpicosecond time intervals between two photons by interference Phys. Rev. Lett.59 2044-6 · doi:10.1103/PhysRevLett.59.2044
[13] Tichy M C, Tiersch M, de Melo F, Mintert F and Buchleitner A 2010 Zero-transmission law for multiport beam splitters Phys. Rev. Lett.104 220405 · doi:10.1103/PhysRevLett.104.220405
[14] Mayer K, Tichy M C, Mintert F, Konrad T and Buchleitner A 2011 Counting statistics of many-particle quantum walks Phys. Rev. A 83 062307 · doi:10.1103/PhysRevA.83.062307
[15] Tichy M C, Tiersch M, Mintert F and Buchleitner A 2012 Many-particle interference beyond many-boson and many-fermion statistics New J. Phys.14 093015 · doi:10.1088/1367-2630/14/9/093015
[16] Ra Y-S, Tichy M C, Lim H-T, Kwon O, Mintert F, Buchleitner A and Kim Y-H 2013 Nonmonotonic quantum-to-classical transition in multiparticle interference Proc. Natl Acad. Sci. USA110 1227-31 · doi:10.1073/pnas.1206910110
[17] Minc H 1978 Permanents, Encyclopedia of Mathematics and its Applications. vol 16 · Zbl 0401.15005
[18] Troyansky L and Tishby N 1996 On the quantum evaluation of the determinant and the permanent of a matrix Proc. Fourth Workshop on Physics and Computation (PhysComp 96) (Boston, 22-24 November 1996)96
[19] Carolan J et al 2014 On the experimental verification of quantum complexity in linear optics Nat. Photon.8 621-6 · doi:10.1038/nphoton.2014.152
[20] Tichy M C, Mayer K, Buchleitner A and Mølmer K 2014 Stringent and efficient assessment of boson-sampling devices Phys. Rev. Lett.113 020502 · doi:10.1103/PhysRevLett.113.020502
[21] Carolan J et al 2015 universal linear optics Science349 711-6 · Zbl 1355.81194 · doi:10.1126/science.aab3642
[22] Crespi A, Osellame R, Ramponi R, Bentivegna M, Flamini F, Spagnolo N, Viggianiello N, Innocenti L, Mataloni P and Sciarrino F 2015 Quantum suppression law in a 3-D photonic chip implementing the fast fourier transform (arXiv: 1508.00782)
[23] Akkermans E and Montambaux G 2007 Mesoscopic Physics of Electrons and Photons · doi:10.1017/CBO9780511618833
[24] Bloch F 1929 Über die quantenmechanik der elektronen in kristallgittern Z. Physik.52 555-600 · JFM 54.0990.01 · doi:10.1007/BF01339455
[25] Aharonov Y, Davidovich L and Zagury N 1993 Quantum random walks Phys. Rev. A 48 1687-90 · doi:10.1103/PhysRevA.48.1687
[26] Scholak T, Wellens T and Buchleitner A 2014 Spectral backbone of excitation transport in ultracold rydberg gases Phys. Rev. A 90 063415 · doi:10.1103/PhysRevA.90.063415
[27] Engl T, Dujardin J, Argüelles A, Schlagheck P, Richter K and Urbina J D 2014 Coherent backscattering in fock space: a signature of quantum many-body interference in interacting bosonic systems Phys. Rev. Lett.112 140403 · doi:10.1103/PhysRevLett.112.140403
[28] Jeltes T et al 2007 Comparison of the hanbury brown-twiss effect for bosons and fermions Nature445 402-5 01 · doi:10.1038/nature05513
[29] Rom T, Best Th, van Oosten D, Schneider U, Folling S, Paredes B and Bloch I 2006 Free fermion antibunching in a degenerate atomic fermi gas released from an optical lattice Nature444 733-6 12 · doi:10.1038/nature05319
[30] Chuchem M, Smith-Mannschott K, Hiller M, Kottos T, Vardi A and Cohen D 2010 Quantum dynamics in the bosonic josephson junction Phys. Rev. A 82 053617 · doi:10.1103/PhysRevA.82.053617
[31] Mehta M L 2004 Random Matrices (Amsterdam: Elsevier) · Zbl 1107.15019
[32] Mezzadri F 2007 How to generate random matrices from the classical compact groups Notices AMS54 592-604 (www.ams.org/notices/200705/fea-mezzadri-web.pdf) · Zbl 1156.22004
[33] Zyczkowski K and Kus M 1994 Random unitary matrices J. Phys. A: Math. Gen.27 4235 · doi:10.1088/0305-4470/27/12/028
[34] Samuel S 1980 U(N) integrals, 1/N, and the De Wit-’t Hooft anomalies J. Math. Phys.21 2695-703 · doi:10.1063/1.524386
[35] Mello P A 1990 Averages on the unitary group and applications to the problem of disordered conductors J. Phys. A 23 4061-80 · doi:10.1088/0305-4470/23/18/013
[36] Brouwer P W and Beenakker C W J 1996 Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems J. Math. Phys.37 4904-34 · Zbl 0861.22014 · doi:10.1063/1.531667
[37] Berkolaiko G and Kuipers J 2013 Combinatorial theory of the semiclassical evaluation of transport moments. I. equivalence with the random matrix approach J. Math. Phys.54 112103 · Zbl 1288.81048 · doi:10.1063/1.4826442
[38] Urbina J-D, Kuipers J, Hummel Q and Richter K 2014 Multiparticle correlations in complex scattering and the mesoscopic boson sampling problem (arXiv:1409.1558)
[39] Bratteli O and Robinson D W 1997 Operator Algebras and Quantum Statistical Mechanics: Equilibrium States. Models in Quantum Statistical Mechanics · Zbl 0903.46066 · doi:10.1007/978-3-662-03444-6
[40] Peruzzo A et al 2010 Quantum walks of correlated photons Science329 1500-3 · doi:10.1126/science.1193515
[41] MacGillivray H L 1986 Skewness and asymmetry: Measures and orderings Ann. Stat.14 994-1011 · Zbl 0604.62011 · doi:10.1214/aos/1176350046
[42] Aaronson S and Arkhipov A 2014 Bosonsampling is far from uniform Quantum Info. Comput.14 1383-423 (www.rintonpress.com/journals/qiconline.htm)
[43] Shchesnovich V S 2014 Sufficient condition for the mode mismatch of single photons for scalability of the boson-sampling computer Phys. Rev. A 89 022333 · doi:10.1103/PhysRevA.89.022333
[44] Tichy M C 2015 Sampling of partially distinguishable bosons and the relation to the multidimensional permanent Phys. Rev. A 91 022316 · doi:10.1103/PhysRevA.91.022316
[45] Shchesnovich V S 2015 Partial indistinguishability theory for multiphoton experiments in multiport devices Phys. Rev. A 91 013844 · doi:10.1103/PhysRevA.91.013844
[46] Mayer K 2012 Many-particle quantum walks Master’s Thesis Albert-Ludwigs Universität Freiburg, Freiburg
[47] Tamma V and Laibacher S 2015 Multiboson correlation interferometry with arbitrary single-photon pure states Phys. Rev. Lett.114 243601 · doi:10.1103/PhysRevLett.114.243601
[48] Laibacher S and Tamma V 2015 From the physics to the computational complexity of multiboson correlation interference Phys. Rev. Lett.115 243605 · doi:10.1103/PhysRevLett.115.243605
[49] Schuster H G 1989 Deterministic Chaos: An Introduction (Weinheim: VCH) 1st reprint of 2nd ed · Zbl 0709.58002
[50] Bohigas O, Giannoni M J and Schmit C 1984 Characterization of chaotic quantum spectra and universality of level fluctuation laws Phys. Rev. Lett.52 1-4 · Zbl 1119.81326 · doi:10.1103/PhysRevLett.52.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.