×

Generalised phase kick-back: the structure of computational algorithms from physical principles. (English) Zbl 1456.81143

Summary: The advent of quantum computing has challenged classical conceptions of which problems are efficiently solvable in our physical world. This motivates the general study of how physical principles bound computational power. In this paper we show that some of the essential machinery of quantum computation – namely reversible controlled transformations and the phase kick-back mechanism – exist in any operational-defined theory with a consistent notion of information. These results provide the tools for an exploration of the physics underpinning the structure of computational algorithms. We investigate the relationship between interference behaviour and computational power, demonstrating that non-trivial interference behaviour is a general resource for post-classical computation. In proving the above, we connect higher-order interference to the existence of post-quantum particle types, potentially providing a novel experimental test for higher-order interference. Finally, we conjecture that theories with post-quantum interference – the higher-order interference of Sorkin – can solve problems intractable even on a quantum computer.

MSC:

81P68 Quantum computation
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P05 General and philosophical questions in quantum theory

References:

[1] Aaronson S and Arkhipov A 2011 The computational complexity of linear optics Proc. 43rd Annual ACM Symp. on Theory of Computing (STOC 2011) pp 333-42 · Zbl 1288.68066 · doi:10.1145/1993636.1993682
[2] Shor P 1997 Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer SIAM J. Sci. Stat. Comput.26 1484 · Zbl 1005.11065 · doi:10.1137/S0097539795293172
[3] Cleve R, Ekert A, Macchiavello C and Mosca M 1998 Quantum algorithms revisited Proc. R. Soc. A 454 · Zbl 0915.68050 · doi:10.1098/rspa.1998.0164
[4] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp 339-54 · Zbl 1049.81015
[5] Chiribella G, D’Ariano G M and Perinotti P 2010 Probabilistic theories with purification Phys. Rev. A 81 062348 · doi:10.1103/PhysRevA.81.062348
[6] Chiribella G, D’Ariano G M and Perinotti P 2011 Informational derivation of quantum theory Phys. Rev. A 84 012311 · doi:10.1103/PhysRevA.84.012311
[7] Barrett J 2007 Information processing in generalized probabilistic theories Phys. Rev. A 75 032304 · doi:10.1103/PhysRevA.75.032304
[8] Hardy L 2011 Reformulating and reconstructing quantum theory (arXiv:quant-ph/1104.2066v3)
[9] Lee C M and Barrett J 2014 Computation in generalised probabilistic theories (arXiv:quant-ph/1412.8671)
[10] van Dam W 2005 Implausible consequences of superstrong nonlocality (arXiv:quant-ph/0501159) · Zbl 1336.81021
[11] Barnum H, Mueller M P and Ududec C 2014 Higher-order interference and single system postulates for quantum theory New J. Phys.16 123029 · Zbl 1451.81007 · doi:10.1088/1367-2630/16/12/123029
[12] Niestegge G 2012 Conditional probability, three-slit experiments and the Jordan structure of quantum mechanics Adv. Math. Phys.2012 156573 · Zbl 1267.81021 · doi:10.1155/2012/156573
[13] Henson J 2015 Bounding quantum contextuality with lack of third-order interference Phys. Rev. Lett.114 220403 · doi:10.1103/PhysRevLett.114.220403
[14] Ududec C, Barnum H and Emerson J 2011 Three slit experiments and the structure of quantum theory Found. Phys.41 396-405 · Zbl 1211.81026 · doi:10.1007/s10701-010-9429-z
[15] Sinha U, Couteau C, Medendorp Z, Söllner I, Laflamme R and Sorkin R 2008 Testing Born’s rule in quantum mechanics with a triple slit experiment (arXiv:quant-ph/0811.2068)
[16] Park D, Moussa O and Laflamme R 2012 Three path interference using nuclear magnetic resonance: a test of the consistency of Born’s rule New J. Phys.14 113025 · doi:10.1088/1367-2630/14/11/113025
[17] Sorkin R 1994 Quantum mechanics as quantum measure theory Mod. Phys. Lett. A 9 3119-27 · Zbl 1021.81504 · doi:10.1142/S021773239400294X
[18] Sorkin R 1995 Quantum measure theory and its interpretation (arXiv:gr-qc/9507057)
[19] Stahlke D 2014 Quantum interference as a resource for quantum speedup Phys. Rev. A 90 022302 · doi:10.1103/PhysRevA.90.022302
[20] Garner A, Dahlsten O, Nakata Y, Murao M and Vedral V 2013 Phase and interference in generalised probabilistic theories New J. Phys.15 093044 · Zbl 1451.81010 · doi:10.1088/1367-2630/15/9/093044
[21] Gross D, Mueller M, Colbeck R and Dahlsten O 2010 All reversible dynamics in maximal non-local theories are trivial Phys. Rev. Lett.104 080402 · doi:10.1103/PhysRevLett.104.080402
[22] Mueller M and Ududec C 2012 The structure of reversible computation determines the self-duality of quantum theory Phy. Rev. lett108 130401 · doi:10.1103/PhysRevLett.108.130401
[23] Dahlsten O, Garner A, Thompson J, Gu M and Vedral V 2013 Particle exchange in post-quantum theories (arXiv:quant-ph/1307.2529-v2)
[24] Dakić B, Paterek T and Brukner Č 2014 Density cubes and higher-order interference theories New J. Phys.16 023028 · Zbl 1451.81009 · doi:10.1088/1367-2630/16/2/023028
[25] Ududec C 2012 Perspectives on the formalism of quantum theory
[26] Lee C M and Selby J H 2015 Higher-order interference in extensions of quantum theory (arXiv:quant-ph/1510.03860)
[27] Afanasiev G N 1991 Quantum mechanics of toroidal anyons J. Phys. A: Math. Gen.24 2517 · doi:10.1088/0305-4470/24/11/018
[28] Zwiebach B 2009 A first course in String Theory (Cambridge: Cambridge University Press) · Zbl 1185.81005 · doi:10.1017/CBO9780511841620
[29] Korzekwa K, Lostaglio M, Oppenheim J and Jennings D 2015 The extraction of work from quantum coherence (arXiv:quant-ph/1506.07875)
[30] Coecke B 2010 Quantum picturalism Contemp. Phys.51 1 · doi:10.1080/00107510903257624
[31] Abramsky S and Coecke B 2004 A categorical semantics of quantum protocols Proc. 19th Annual IEEE Symp. on Logic in Computer Science
[32] Barnum H, Barrett J, Krumm M and Mueller M 2015 Entropy, majorization and thermodynamics in general probabilistic theories (arXiv:quant-ph/1508.03107)
[33] Chiribella G and Scandolo C M 2015 Entanglement and thermodynamics in general probabilistic theories (arXiv:quant-ph/1504.07045)
[34] Chiribella G and Scandolo C M 2015 Operational axioms for state diagonalization (arXiv:quant-ph/1506.00380)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.