×

Randomness in post-selected events. (English) Zbl 1456.81033

Summary: Bell inequality violations can be used to certify private randomness for use in cryptographic applications. In photonic Bell experiments, a large amount of the data that is generated comes from no-detection events and presumably contains little randomness. This raises the question as to whether randomness can be extracted only from the smaller post-selected subset corresponding to proper detection events, instead of from the entire set of data. This could in principle be feasible without opening an analogue of the detection loophole as long as the min-entropy of the post-selected data is evaluated by taking all the information into account, including no-detection events. The possibility of extracting randomness from a short string has a practical advantage, because it reduces the computational time of the extraction. Here, we investigate the above idea in a simple scenario, where the devices and the adversary behave according to i.i.d. strategies. We show that indeed almost all the randomness is present in the pair of outcomes for which at least one detection happened. We further show that in some cases applying a pre-processing on the data can capture features that an analysis based on global frequencies only misses, thus resulting in the certification of more randomness. We then briefly consider non-i.i.d strategies and provide an explicit example of such a strategy that is more powerful than any i.i.d. one even in the asymptotic limit of infinitely many measurement rounds, something that was not reported before in the context of Bell inequalities.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81P13 Contextuality in quantum theory
81P94 Quantum cryptography (quantum-theoretic aspects)

References:

[1] Metropolis N and Ulam S 1949 J. Am. Stat. Assoc.44 335 · Zbl 0033.28807 · doi:10.1080/01621459.1949.10483310
[2] Motwani R and Raghavan P 1995 Randomized Algorithms (New York: Cambridge University Press) · Zbl 0849.68039 · doi:10.1017/CBO9780511814075
[3] Vadhan S P 2011 Found. Trends Theor. Comput. Sci.7 1 · Zbl 1308.68011 · doi:10.1561/0400000010
[4] Colbeck R 2009 Quantum and relativistic protocols for secure multi-party computation PhD Thesis Trinity College University of Cambridge (arXiv:0911.3814)
[5] Pironio S et al 2010 Nature464 1021 · doi:10.1038/nature09008
[6] Pironio S and Massar S 2013 Phys. Rev. A 87 012336 · doi:10.1103/physreva.87.012336
[7] Vazirani U and Vidick T 2012 arXiv:1111.6054
[8] Bancal J-D, Sheridan L and Scarani V 2014 New J. Phys.16 033011 · Zbl 1451.81060 · doi:10.1088/1367-2630/16/3/033011
[9] Nieto-Silleras O, Pironio S and Silman J 2014 New J. Phys.16 013035 · Zbl 1451.81037 · doi:10.1088/1367-2630/16/1/013035
[10] Christensen B G et al 2013 Phys. Rev. Lett.111 130406 · doi:10.1103/PhysRevLett.111.130406
[11] Eberhard P H 1993 Phys. Rev. A 47 R747 · doi:10.1103/PhysRevA.47.R747
[12] Mermin N D 1986 Ann. New York Acad. Sci.480 422 · doi:10.1111/j.1749-6632.1986.tb12444.x
[13] Bierhorst P 2015 J. Phys. A: Math. Theor.48 195302 · Zbl 1382.81219 · doi:10.1088/1751-8113/48/19/195302
[14] Shaltiel R Bull. EATCS77 10
[15] De A, Portmann C, Vidick T and Renner R 2012 SIAM J. Comput.41 915 · Zbl 1279.68275 · doi:10.1137/100813683
[16] Konig R, Renner R and Schaffner C 2009 IEEE Trans. Inf. Theory55 4337 · Zbl 1367.81028 · doi:10.1109/TIT.2009.2025545
[17] Navascués M, Pironio S and Acín A 2007 Phys. Rev. Lett.98 010401 · doi:10.1103/PhysRevLett.98.010401
[18] Navascués M, Pironio S and Acín A 2008 New J. Phys.10 073013 · doi:10.1088/1367-2630/10/7/073013
[19] Pironio S, Navascués M and Acín A 2010b SIAM J. Optim20 2157 · Zbl 1228.90073 · doi:10.1137/090760155
[20] Moroder T, Bancal J-D, Liang Y-C, Hofmann M and Gühne O 2013 Phys. Rev. Lett.111 030501 · doi:10.1103/PhysRevLett.111.030501
[21] Caprara Vivoli V, Sekatski P, Bancal J-D, Lim C C W, Christensen B G, Martin A, Thew R T, Zbinden H, Gisin N and Sangouard N 2015 Phys. Rev. A 91 012107 · doi:10.1103/PhysRevA.91.012107
[22] Hensen B et al 2015 Nature526 682 · doi:10.1038/nature15759
[23] Máttar A, Skrzypczyk P, Brask J B, Cavalcanti D and Acín A 2015 New J. Phys.17 022003 · Zbl 1452.81083 · doi:10.1088/1367-2630/17/2/022003
[24] Shalm L K et al 2015 Phys. Rev. Lett.115 250402 · doi:10.1103/PhysRevLett.115.250402
[25] Giustina M et al 2015 Phys. Rev. Lett.115 250401 · doi:10.1103/PhysRevLett.115.250401
[26] Massar S, Pironio S, Roland J and Gisin B 2002 Phys. Rev. A 66 052112 · doi:10.1103/PhysRevA.66.052112
[27] Pironio S 2005 J. Math. Phys.46 062112 · Zbl 1110.81032 · doi:10.1063/1.1928727
[28] Barrett J, Collins D, Hardy L, Kent A and Popescu S 2002 Phys. Rev. A 66 042111 · doi:10.1103/PhysRevA.66.042111
[29] Gill R D 2014 Stat. Sci.29 512 · Zbl 1331.81048 · doi:10.1214/14-STS490
[30] Renner R 2005 Security of quantum key distribution PhD Thesis ETH Zurich (arXiv:quant-ph/0512258)
[31] Barrett J, Colbeck R and Kent A 2013 Phys. Rev. Lett.110 010503 · doi:10.1103/PhysRevLett.110.010503
[32] Law Y Z, Thinh L P, Bancal J-D and Scarani V 2014 J. Phys. A: Math. Theor.47 424028 · Zbl 1303.81010 · doi:10.1088/1751-8113/47/42/424028
[33] Collins D and Gisin N 2004 J. Phys. A: Math. Gen.37 1775 · Zbl 1069.81507 · doi:10.1088/0305-4470/37/5/021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.