×

Exponentially more precise quantum simulation of fermions in second quantization. (English) Zbl 1456.81132

Summary: We introduce novel algorithms for the quantum simulation of fermionic systems which are dramatically more efficient than those based on the Lie-Trotter-Suzuki decomposition. We present the first application of a general technique for simulating Hamiltonian evolution using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision. The key difficulty in applying algorithms for general sparse Hamiltonian simulation to fermionic simulation is that a query, corresponding to computation of an entry of the Hamiltonian, is costly to compute. This means that the gate complexity would be much higher than quantified by the query complexity. We solve this problem with a novel quantum algorithm for on-the-fly computation of integrals that is exponentially faster than classical sampling. While the approaches presented here are readily applicable to a wide class of fermionic models, we focus on quantum chemistry simulation in second quantization, perhaps the most studied application of Hamiltonian simulation. Our central result is an algorithm for simulating an \(N\) spin-orbital system that requires \(\tilde{\mathcal{O}}(N^5t)\) gates. This approach is exponentially faster in the inverse precision and at least cubically faster in \(N\) than all previous approaches to chemistry simulation in the literature.

MSC:

81P68 Quantum computation
81V74 Fermionic systems in quantum theory

References:

[1] Barends R et al 2014 Nature508 500 · doi:10.1038/nature13171
[2] Kelly J et al 2015 Nature519 66 · doi:10.1038/nature14270
[3] Nigg D, Müller M, Martinez E A, Schindler P, Hennrich M, Monz T, Martin-Delgado M A and Blatt R 2014 Science345 302 · Zbl 1355.81061 · doi:10.1126/science.1253742
[4] Córcoles A, Magesan E, Srinivasan S J, Cross A W, Steffen M, Gambetta J M and Chow J M 2015 Nat. Commun.6 6979 · doi:10.1038/ncomms7979
[5] Wecker D, Bauer B, Clark B K, Hastings M B and Troyer M 2014 Phys. Rev. A 90 022305 · doi:10.1103/PhysRevA.90.022305
[6] Hastings M B, Wecker D, Bauer B and Troyer M 2015 Quantum Inf. Comput.15 1
[7] Poulin D, Hastings M B, Wecker D, Wiebe N, Doherty A C and Troyer M 2015 Quantum Inf. Comput.15 361
[8] McClean J R, Babbush R, Love P J and Aspuru-Guzik A 2014 J. Phys. Chem. Lett.5 4368 · doi:10.1021/jz501649m
[9] Babbush R, McClean J, Wecker D, Aspuru-Guzik A and Wiebe N 2015 Phys. Rev. A 91 022311 · doi:10.1103/PhysRevA.91.022311
[10] Berry D, Ahokas G, Cleve R and Sanders B 2007 Commun. Math. Phys.270 359 · Zbl 1115.81011 · doi:10.1007/s00220-006-0150-x
[11] Wiebe N, Berry D W, Hoyer P and Sanders B C 2011 J. Phys. A Math. Theor.44 445308 · Zbl 1270.81064 · doi:10.1088/1751-8113/44/44/445308
[12] Gibney E 2014 Nature516 24 · doi:10.1038/516024a
[13] Mueck L 2015 Nat. Chem.7 361 · doi:10.1038/nchem.2248
[14] Lloyd S 1996 Science273 1073 · Zbl 1226.81059 · doi:10.1126/science.273.5278.1073
[15] Abrams D S and Lloyd S 1997 Phys. Rev. Lett.79 2586 · doi:10.1103/PhysRevLett.79.2586
[16] Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Science309 1704 · doi:10.1126/science.1113479
[17] Whitfield J D, Biamonte J and Aspuru-Guzik A 2011 Mol. Phys.109 735 · doi:10.1080/00268976.2011.552441
[18] Babbush R, Love P J and Aspuru-Guzik A 2014 Sci. Rep.4 6603 · doi:10.1038/srep06603
[19] Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love P J, Aspuru-Guzik A and O’Brien J L 2014 Nat. Commun.5 4213 · doi:10.1038/ncomms5213
[20] Yung M-H, Casanova J, Mezzacapo A, McClean J, Lamata L, Aspuru-Guzik A and Solano E 2014 Sci. Rep.4 3589 · doi:10.1038/srep03589
[21] McClean J R, Romero J, Babbush R and Aspuru-Guzik A 2016 New J. Phys.18 023023 · Zbl 1456.81149 · doi:10.1088/1367-2630/18/2/023023
[22] Cody Jones N, Whitfield J D, McMahon P L, Yung M-H, Meter R V, Aspuru-Guzik A and Yamamoto Y 2012 New J. Phys.14 115023 · Zbl 1448.81228 · doi:10.1088/1367-2630/14/11/115023
[23] Veis L and Pittner J 2010 J. Chem. Phys.133 194106 · doi:10.1063/1.3503767
[24] Wang Y et al 2015 ACS Nano9 7769-74 · doi:10.1021/acsnano.5b01581
[25] Whitfield J D 2013 J. Chem. Phys.139 021105 · doi:10.1063/1.4812566
[26] Whitfield J D 2015 arXiv:1502.03771
[27] Li Z, Yung M-H, Chen H, Lu D, Whitfield J D, Peng X, Aspuru-Guzik A and Du J 2011 Sci. Rep.1 88 · doi:10.1038/srep00088
[28] Toloui B and Love P J 2013 arXiv:1312.2579
[29] Aharonov D and Ta-Shma A 2003 Proc. 35th Annual ACM Symp. on Theory of Computing (STOC ’03 ACM)(New York, NY, USA,) pp 20-9 · Zbl 1192.81048
[30] Berry D W, Ahokas G, Cleve R and Sanders B C 2007 Commun. Math. Phys.270 359 · Zbl 1115.81011 · doi:10.1007/s00220-006-0150-x
[31] Cleve R, Gottesman D, Mosca M, Somma R D and Yonge-Mallo D 2009 Proc. 41st Annual ACM Symp. on Theory of Computing (STOC ’09ACM)(New York, NY, USA,) pp 409-16 · Zbl 1304.68051 · doi:10.1145/1536414.1536471
[32] Berry D W, Cleve R and Gharibian S 2014 Quantum Inf. Comput.14 1
[33] Berry D W, Childs A M, Cleve R, Kothari R and Somma R D 2014 Proc. 46th Annual ACM Symp. on Theory of Computing (STOC ’14 ACM)(New York, NY, USA,) pp 283-92 · Zbl 1315.68133 · doi:10.1145/2591796.2591854
[34] Berry D W, Childs A M, Cleve R, Kothari R and Somma R D 2015 Phys. Rev. Lett.114 090502 · doi:10.1103/PhysRevLett.114.090502
[35] Jordan P and Wigner E 1928 Z. Phys.47 631 · JFM 54.0983.03 · doi:10.1007/BF01331938
[36] Somma R D, Ortiz G, Gubernatis J, Knill E and Laflamme R 2002 Phys. Rev. A 65 17 · doi:10.1103/PhysRevA.65.042323
[37] Bravyi S and Kitaev A 2002 Ann. Phys. NY298 210 · Zbl 0995.81012 · doi:10.1006/aphy.2002.6254
[38] Seeley J T, Richard M J and Love P J 2012 J. Chem. Phys.137 224109 · doi:10.1063/1.4768229
[39] Tranter A, Sofia S, Seeley J, Kaicher M, McClean J, Babbush R, Coveney P V, Mintert F, Wilhelm F and Love P J 2015 Int. J. Quantum Chem.115 1431-41 · doi:10.1002/qua.24969
[40] Abrams D S and Williams C P 1999 arXiv:quant-ph/9908083
[41] Grover L K 2000 Phys. Rev. Lett.85 1334 · doi:10.1103/PhysRevLett.85.1334
[42] Grover L K 1996 Proc. 28th Annual ACM Symp. on Theory of Computing (STOC ’96 ACM)(New York, NY, USA,) pp 212-9 · Zbl 0922.68044
[43] Helgaker T, Jorgensen P and Olsen J 2002 Molecular Electronic Structure Theory (New York: Wiley)
[44] Shende V, Bullock S and Markov I 2006 IEEE Trans. Comput. Des. Integr. Circuits Syst.25 1000 · doi:10.1109/TCAD.2005.855930
[45] Brent R P and Zimmermann P 2010 Modern Computer Arithmetic (Cambridge: Cambridge University Press) p 236 · Zbl 1230.68014 · doi:10.1017/CBO9780511921698
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.