×

Design of new fuzzy sliding mode controller based on parallel distributed compensation controller and using the scalar sign function. (English) Zbl 1540.93060

Summary: This paper presents a new design of fuzzy sliding mode controller based on parallel distributed compensation and using a scalar sign function. The proposed fuzzy sliding mode controller (FSMC) uses the parallel distributed compensation (PDC) scheme to design the state feedback control law. The controller gains are determined in offline mode via linear quadratic regulator technique. Moreover, the fuzzy sliding surface of the system is designed using stable eigenvectors and the scalar sign function in order to overcome the discontinuous switching. This later is obtained by a sign function of the standard FSMC. The advantages of the proposed design are a minimum energy control effort, faster response and zero steady-state error. Finally, the validity of the proposed design strategy is demonstrated through the simulation of a flexible joint robot.

MSC:

93C42 Fuzzy control/observation systems
93B12 Variable structure systems
Full Text: DOI

References:

[1] Campana, J. A.; Valdez, J. R.; Cortes, T. H.; Herrera, R. T.; Nosov, V., Analysis of the fuzzy controllability property and stabilization for a class of T-S fuzzy models, IEEE Trans. Fuzzy Syst., 23, 2, 291-301 (2015)
[2] Chang, W.; Park, J. B.; Joob, Y. H.; Chen, G., Design of robust fuzzy-model-based controller with sliding mode control for siso nonlinear systems, Fuzzy Sets and Systems, 125, 1, 1-22 (2002) · Zbl 1002.93524
[3] El Beid, S.; Doubabi, S., DSP-Based implementation of fuzzy output tracking control for a boost converter, IEEE Trans. Ind. Electron., 61, 1, 196-209 (2014)
[4] Fang, C. H.; Liu, Y. S.; Kau, S. W.; Hong, L.; Lee, C. H., A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems, IEEE Trans. Fuzzy Syst., 14, 3, 386-397 (2006)
[5] Hardian, S., Damping enhancement in multimachine power system via output feedback excitation controller, J. ELKHA, 3, 9-12 (2011)
[6] Hong, S.; Langari, R., Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances, IEEE Trans. Control Syst. Technol., 8, 2, 366-371 (2002)
[7] Hung, J., Variable structure control: a survey, IEEE Trans. Ind. Electron., 40, 1, 2-22 (1993)
[8] Isidoti, A., Nonlinear Control Systems (1989), Springer: Springer Berlin · Zbl 0666.93053
[12] Kawasaki, N.; Shimemura, E., Determining quadratic weighting matrices to locate poles in a specified region, Automatica, 19, 5, 557-560 (1983) · Zbl 0524.93028
[13] Koshkouei, A. J.; Zinober, A. S.I., Comments on linear quadratic regulators with eigenvalue placement in a vertical strip, IEEE Trans. Autom. Control, 44, 7, 1417-1419 (1999)
[14] Lee, K. R.; Jeung, E. T.; Park, H. B., Robust fuzzy \(H \infty\) control for uncertain nonlinear systems via state feedback: an LMI approach, Fuzzy Sets and Systems, 120, 1, 123-134 (2001) · Zbl 0974.93546
[15] Lee, H. J.; Park, J. B.; Joo, Y. H., Robust load-frequency control for uncertain nonlinear power systems: A fuzzy logic approach, Inform. Sci., 176, 23, 3520-3537 (2006) · Zbl 1125.93038
[17] Malki, H. A.; Misir, D.; Feigenspan, D.; Chen, G., Fuzzy PID control of a fjr arm with uncertainties from time varying loads, IEEE Trans. Control Syst. Technol., 5, 371-378 (1997)
[19] Niu, Y.; Ho, D.; Wang, Z., Improved sliding mode control for discrete time systems via reaching law, IET Control Theory Appl., 4, 11, 2245-2251 (2010)
[20] Noble, B., Applied Linear Algebra (1969), Prentice-Hall: Prentice-Hall NewJersey · Zbl 0203.33201
[23] Palm, R., Robust control by fuzzy sliding mode, Automatica, 30, 9, 1429-1437 (1994) · Zbl 0925.93501
[24] Palm, R.; Driankov, D.; Hellendoorn, H., Model Based Fuzzy Control: Fuzzy Gain Schedulers and Sliding Mode Fuzzy Controllers (1997), Springer-Verlag: Springer-Verlag Berlin, Germany · Zbl 0881.93003
[26] Roberts, J. D., Linear model reduction and solution of the algebraic riccati equations by use of sign function, Int. J. Control, 32, 4, 677-687 (1980) · Zbl 0463.93050
[27] Safonov, M. G.; Athans, M., Gain and phase margin for multiloop LQR regulators, lEEE Trans. Autom. Control, 22, 2, 173-179 (1977) · Zbl 0356.93016
[29] Seidi, M.; Markazi, A. H.D., Performance-oriented parallel distributed compensation, J. Franklin Inst. B, 348, 7, 1231-1244 (2011) · Zbl 1227.93068
[32] Singla, M.; Shieh, L. S.; Song, G.; Xie, L.; Zhang, Y., A new optimal sliding mode controller design using scalar sign function, ISA Trans., 53, 267-279 (2014)
[33] Slotine, J. J.E.; Li, W., Applied Nonlinear Control (1991), Prentice-Hall · Zbl 0753.93036
[34] Spong, M., Modeling and control of elastic joint robot, J. Dyn. Syst. Meas. Control, 109, 310-319 (1987) · Zbl 0656.93052
[35] Spong, M. W.; Khorasani, K.; Kokotovic, P. V., An integral manifold approach to the feedback control of fjrs, IEEE J. Robot. Autom., 3, 291-300 (1987)
[36] Sugeno, M.; Kang, G., Fuzzy modeling and control of multilayer incinerator, Fuzzy Sets and Systems, 18, 3, 329-345 (1986) · Zbl 0612.93022
[38] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its application to modeling and control, IEEE Trans. Syst. Man Cybern., 15, 1, 116-132 (1985) · Zbl 0576.93021
[39] Tanaka, K.; Sugeno, M., Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems, 45, 2, 135-156 (1992) · Zbl 0758.93042
[41] Wang, H. O.; Tanaka, K.; Griffin, M. F., An approach to fuzzy control of nonlinear systems: Stability and design issues, IEEE Trans. Fuzzy Syst., 4, 1, 14-23 (1996)
[43] Wu, J.; Singla, M.; Olmi, C.; Shieh, L.; Song, G., Digital controller design for absolute value function constrained nonlinear systems via scalar sign function approach, ISA Trans., 49, 302-310 (2010)
[44] Xinghuo, Y.; Zhihong, M.; Baolin, W., Design of fuzzy sliding-mode control systems, Fuzzy Sets and Systems, 95, 3, 295-306 (1998) · Zbl 0948.93513
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.