×

Phase-isometries between normed spaces. (English) Zbl 1458.39019

The main goal of this paper is to give a positive answer to a question of G. Maksa and Z. Páles [Publ. Math. 81, No. 1–2, 243–249 (2012; Zbl 1299.39017)] on a Wigner’s type result for real normed spaces. More precisely, it is proven that if \(X\) and \(Y\) are real normed spaces and \(f : X \to Y\) is a surjective mapping, then \(f\) satisfies \(\{f(x) + f(y), f(x) - f(y)\} = \{x + y, x - y \}\), for every \(x\) and \(y\in X\) if and only if \(f\) is phase equivalent to a surjective linear isometry, that is, \(f = \sigma U\), where \(U : X \to Y\) is a surjective linear isometry and \(\sigma : X \to \{-1, 1\}\).

MSC:

39B52 Functional equations for functions with more general domains and/or ranges
46C50 Generalizations of inner products (semi-inner products, partial inner products, etc.)
46B03 Isomorphic theory (including renorming) of Banach spaces
46B04 Isometric theory of Banach spaces
47J05 Equations involving nonlinear operators (general)
53A20 Projective differential geometry

Citations:

Zbl 1299.39017

References:

[1] Blanco, A.; Turnšek, A., On maps that preserve orthogonality in normed spaces, Proc. R. Soc. Edinb., Sect. A, 136, 709-716 (2006) · Zbl 1115.46016
[2] Chevalier, G., Wigner’s theorem and its generalizations, (Handbook of Quantum Logic and Quantum Structures (2007), Elsevier), 429-475 · Zbl 1126.81031
[3] Faure, C. A.; Frölicher, A., Morphisms of projective geometries and semilinear maps, Geom. Dedic., 53, 237-262 (1994) · Zbl 0826.51002
[4] Faure, C. A., An elementary proof of the fundamental theorem of projective geometry, Geom. Dedic., 90, 145-151 (2002) · Zbl 0996.51001
[5] Gehér, Gy. P., An elementary proof for the non-bijective version of Wigner’s theorem, Phys. Lett. A, 378, 2054-2057 (2014) · Zbl 1331.46066
[6] Győry, M., A new proof of Wigner’s theorem, Rep. Math. Phys., 54, 2, 159-167 (2004) · Zbl 1161.81381
[7] Havlicek, H., A generalization of Brauner’s theorem on linear mappings, Mitt. Math., Semin. Giessen, 215, 27-41 (1994) · Zbl 0803.51004
[8] Huang, X.; Tan, D., Wigner’s theorem in atomic \(L_p\)-spaces \((p > 0)\), Publ. Math. (Debr.), 92, 411-418 (2018) · Zbl 1399.39052
[9] Huang, X.; Tan, D., Phase-isometries on real normed spaces, J. Math. Anal. Appl., 488, 1, Article 124058 pp. (2020) · Zbl 1454.46015
[10] Ilišević, D.; Turnšek, A., On Wigner’s theorem in strictly convex normed spaces, Publ. Math. (Debr.), 97, 393-401 (2020) · Zbl 1499.46039
[11] Jia, W.; Tan, D., Wigner’s theorem in \(\mathcal{L}^\infty(\operatorname{\Gamma})\)-type spaces, Bull. Aust. Math. Soc., 97, 279-284 (2018) · Zbl 1398.46010
[12] Koldobsky, A., Operators preserving orthogonality are isometries, Proc. R. Soc. Edinb., Sect. A, 123, 835-837 (1993) · Zbl 0806.46013
[13] Li, Y.; Tan, D., Wigner’s theorem on the Tsirelson space T, Ann. Funct. Anal., 10, 515-524 (2019) · Zbl 1457.46014
[14] Maksa, G.; Páles, Z., Wigner’s theorem revisited, Publ. Math. (Debr.), 81, 243-249 (2012) · Zbl 1299.39017
[15] Molnár, L., An algebraic approach to Wigner’s unitary-antiunitary theorem, J. Aust. Math. Soc. Ser. A, 65, 3, 354-369 (1998) · Zbl 0943.46033
[16] Rätz, J., On Wigner’s theorem: remarks, complements, comments, and corollaries, Aequ. Math., 52, 1-9 (1996) · Zbl 0860.39033
[17] Wang, R.; Bugajewski, D., On normed spaces with the Wigner property, Ann. Funct. Anal., 11, 523-539 (2020) · Zbl 1451.46014
[18] Zeng, X.; Huang, X., Phase-isometries between two \(l^p(\operatorname{\Gamma}, H)\)-type spaces, Aequ. Math., 94, 793-802 (2020) · Zbl 1448.39041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.