×

From the Hitchin section to opers through nonabelian Hodge. (English) Zbl 1458.53035

Summary: For a complex simple simply connected Lie group \(G\), and a compact Riemann surface \(C\), we consider two sorts of families of flat \(G\)-connections over \(C\). Each family is determined by a point \(\mathbf{u}\) of the base of Hitchin’s integrable system for \((G,C)\). One family \(\nabla_{\hbar ,\mathbf{u}}\) consists of \(G\)-opers, and depends on \(\hbar \in \mathbb{C}^\times \). The other family \(\nabla_{R, \zeta,\mathbf{u}}\) is built from solutions of Hitchin’s equations, and depends on \(\zeta \in \mathbb{C}^\times, R \in \mathbb{R}^+\). We show that in the scaling limit \(R \to 0, \zeta = \hbar R\), we have \(\nabla_{R,\zeta,\mathbf{u}} \to \nabla_{\hbar,\mathbf{u}} \). This establishes and generalizes a conjecture formulated by Gaiotto.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Davide Gaiotto (2014). Opers and TBA. eprint: 1403.6137.
[2] Takahiro Kawai and Yoshitsugu Takei (2005). Algebraic analysis of singular perturbation theory. Vol. 227. Translations of Mathematical Monographs. Translated from the 1998 Japanese original by Goro Kato, Iwanami Series in Modern Mathematics. American Mathematical Society, Providence, RI, pp. xiv+129. ISBN: 0-8218-3547-5. MR2182990. · Zbl 1100.34004
[3] Kohei Iwaki and Tomoki Nakanishi (2014). Exact WKB analysis and cluster algebras. J. Phys. A 47(47), 474009, 98. MR3280000, Zbl 1311.81113. · Zbl 1311.81113
[4] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke (2013). Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239-403. arXiv: 0907.3987 [hep-th]. MR3003931, Zbl 1358.81150. · Zbl 1358.81150
[5] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke (2013). Spectral networks. Annales Henri Poincar´e 14(7), 1643-1731. arXiv: 1204.4824 [hep-th]. MR3115984. · Zbl 1288.81132
[6] Nikita Nekrasov, Alexey Rosly, and Samson Shatashvili (2015). Darboux coordinates, Yang-Yang functional, and gauge theory, Theor. Math. Phys. 182, No. 2, 311; translation from Teor. Mat. Fiz. 182, No. 2, 368 (2015). arXiv: 1103.3919 [hep-th]. MR3370587, Zbl 1308.81133. · Zbl 1317.81201
[7] Nigel J. Hitchin (1987). The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3) 55(1), 59-126. MR0887284. · Zbl 0634.53045
[8] Carlos T. Simpson (1988). Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Amer. Math. Soc. 1(4), 867-918. MR0944577, Zbl 0669.58008. · Zbl 0669.58008
[9] N. J. Hitchin (1992). Lie groups and Teichm¨uller space. Topology 31(3), 449-473. MR1174252. · Zbl 0769.32008
[10] Edward Frenkel and David Ben-Zvi (2004). Vertex algebras and algebraic curves. Second. Vol. 88. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, pp. xiv+400. ISBN: 0-8218-3674-9. DOI: 10.1090/surv/088.http://dx.doi.org/10.1090/surv/088. MR2082709. · Zbl 1106.17035
[11] Richard A. Wentworth (2014). Higgs bundles and local systems on Riemann surfaces. eprint: 1402.4203. Birkh¨auser/Springer, ISBN 978-3-319-33577-3; 9783-319-33578-0. Advanced Courses in Mathematics - CRM Barcelona, 165-219 (2016). MR3675465, Zbl 06856152.
[12] Peter Dalakov (2008). Higgs Bundles and Opers. ProQuest AAI 3309421. PhD thesis. University of Pennsylvania. MR2711618. · Zbl 1353.14017
[13] Roberto Zucchini (1995). The Drinfeld-Sokolov holomorphic bundle and classical W algebras on Riemann surfaces. J. Geom. Phys. 16, 237-274. arXiv: hepth/9403036 [hep-th]. MR1334655, Zbl 0824.32009. · Zbl 0824.32009
[14] Steven G. Krantz and Harold R. Parks (2013). The implicit function theorem. Modern Birkh¨auser Classics. History, theory, and applications, Reprint of the 2003 edition. Birkh¨auser/Springer, New York, pp. xiv+163. ISBN: 978-1-46145980-4; 978-1-4614-5981-1. DOI: 10.1007/978-1-4614-5981-1.http://dx.doi. org.ezproxy.lib.utexas.edu/10.1007/978-1-4614-5981-1. MR2977424. · Zbl 1269.58003
[15] Francois Labourie (2014). Cyclic surfaces and Hitchin components in rank 2, Ann. Math. (2) 185, No. 1, 1-58 (2017). eprint: 1406.4637. MR3583351, Zbl 1372.32021. · Zbl 1372.32021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.