×

On sparsity of the solution to a random quadratic optimization problem. (English) Zbl 1459.90143

Summary: The standard quadratic optimization problem (StQP), i.e. the problem of minimizing a quadratic form \(\mathbf{x}^T Q \mathbf{x}\) on the standard simplex \(\{\mathbf{x} \ge \mathbf{0} : \mathbf{x}^T \mathbf{e} = 1\}\), is studied. The StQP arises in numerous applications, and it is known to be NP-hard. Chen, Peng and Zhang showed that almost certainly the StQP with a large random matrix \(Q = Q^T, Q_{i, j}, (i \le j)\) being independent and identically concave-distributed, attains its minimum at a point \(\mathbf{x}\) with support size \(|\{j : x_j > 0\}|\) bounded in probability. Later Chen and Peng proved that for \(Q = (M + M^T)/2\), with \(M_{i, j}\) i.i.d. normal, the likely support size is at most 2. In this paper we show that the likely support size is poly-logarithmic in \(n\), the problem size, for a considerably broader class of the distributions. Unlike the cited papers, the mild constraints are put on the asymptotic behavior of the distribution at a single left endpoint of its support, rather than on the distribution’s shape elsewhere. It also covers the distributions with the left endpoint \(-\infty\), provided that the distribution of \(Q_{i, j}, (i \le j)\) (of \(M_{i, j}\), if \(Q = (M + M^T)/2\) resp.) has a (super/sub) exponentially narrow left tail.

MSC:

90C20 Quadratic programming
90C26 Nonconvex programming, global optimization
15B52 Random matrices (algebraic aspects)

References:

[1] Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 232-241 (2003) · Zbl 1192.90157
[2] Bomze, IM, On standard quadratic optimization problems, J. Global Optim., 13, 369-387 (1998) · Zbl 0916.90214 · doi:10.1023/A:1008369322970
[3] Bomze, IM; de Klerk, E., Solving standard quadratic optimization problems via linear, semidefinite and copositive programming, J. Global Optim., 24, 163-185 (2002) · Zbl 1047.90038 · doi:10.1023/A:1020209017701
[4] Bomze, IM; Locatelli, M.; Tardella, F., New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability, Math. Program., 1, 31-64 (2008) · Zbl 1171.90007 · doi:10.1007/s10107-007-0138-0
[5] Bomze, IM; Schachinger, W.; Ullrich, R., The complexity of simple models—a study of worst and typical hard cases for the standard quadratic optimization problem, Math. Oper. Res., 43, 651-674 (2018) · Zbl 1440.90042 · doi:10.1287/moor.2017.0877
[6] Boucheron, S.; Lugosi, G.; Massart, P., Concentration Inequalities: A Non-asymptotic Theory of Independence (2013), Oxford: Oxford University Press, Oxford · Zbl 1337.60003 · doi:10.1093/acprof:oso/9780199535255.001.0001
[7] Bundfuss, S.; Dür, M., An adaptive linear approximation algorithm for copositive programs, SIAM J. Optim., 20, 30-53 (2009) · Zbl 1187.90187 · doi:10.1137/070711815
[8] Burer, S., Ye, Y.: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic program. Math. Programm. (2019, forthcoming). doi:10.1007/s10107-019-01367-2 · Zbl 1445.90073
[9] Candès, E.; Wakin, M., An introduction to compressive sampling, IEEE Signal Process. Mag., 25, 21-30 (2008) · doi:10.1109/MSP.2007.914731
[10] Candès, E.; Romberg, J.; Tao, T., Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52, 489-509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[11] Chen, X.; Peng, J.; Zhang, S., Sparse solutions to random standard quadratic optimization problems, Math. Program., 141, 273-293 (2013) · Zbl 1305.90323 · doi:10.1007/s10107-012-0519-x
[12] Chen, X.; Peng, J., New analysis on sparse solutions to random standard quadratic optimization problems, Math. Oper. Res., 40, 725-738 (2015) · Zbl 1332.90187 · doi:10.1287/moor.2014.0692
[13] Chen, X., Teo, C.: Sparse solutions to complex models. In: Informs Tutorials in Operations Research (2013)
[14] Cornuejols, G.; Tütüncü, R., Optimization Methods in Finance (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1117.91031
[15] Dean, DS; Majumdar, SN, Extreme value statistics of eigenvalues of Gaussian random matrices, Phys. Rev. E, 77, 041108.1-041108.12 (2008) · doi:10.1103/PhysRevE.77.041108
[16] Donoho, D., Compressed sensing, IEEE Trans. Inf. Theory, 52, 1289-1306 (2006) · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[17] Feller, W., One sided analogues of Karamata’s regular variation, Enseignement Math., 15, 107-121 (1969) · Zbl 0177.08201
[18] Feller, W., An Introduction to Probability Theory and Its Applications, II (1971), New York: Wiley, New York · Zbl 0219.60003
[19] Gao, J.; Li, D., Optimal cardinality constrained portfolio selection, Oper. Res., 61, 745-761 (2013) · Zbl 1273.91423 · doi:10.1287/opre.2013.1170
[20] Gibbons, LE; Hearn, DW; Pardalos, P.; Ramana, MV, Continuous characterizations of the maximal clique problem, Math. Oper. Res., 22, 754-768 (1997) · Zbl 0883.90098 · doi:10.1287/moor.22.3.754
[21] Goldberg, A.V., Marchetti-Spaccamela, A.: On finding the exact solution of a zero-one knapsack problem. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 359-368 (1984)
[22] Green, R.; Hollifield, B., When will mean-variance efficient portfolio be well diversified?, J. Finance, 47, 1785-1809 (1992) · doi:10.1111/j.1540-6261.1992.tb04683.x
[23] Haigh, J., The distribution of evolutionarily stable strategies, J. Appl. Probab., 25, 113-125 (1988) · Zbl 0669.92023 · doi:10.2307/3214432
[24] Haigh, J., How large is the support of an ESS, J. Appl. Probab., 26, 164-170 (1989) · Zbl 0677.92013 · doi:10.2307/3214326
[25] Ibaraki, T.; Katoh, N., Resource Allocation Problems: Algorithmic Approaches (1988), Cambridge: MIT Press, Cambridge · Zbl 0786.90067
[26] Jameson, G., A simple proof of Stirling’s formula for the gamma function, Math. Gaz., 99, 544, 68-74 (2015) · Zbl 1384.33004 · doi:10.1017/mag.2014.9
[27] Karlin, S.; Taylor, HM, A Second Course in Stochastic Processes (1981), London: Academic Press, London · Zbl 0469.60001
[28] Kingman, JFC, Typical polymorphisms maintained by selection at a single locus, J. Appl. Probab., 25, 113-125 (1988) · Zbl 0665.92011 · doi:10.2307/3214150
[29] Knuth, DE; Motwani, R.; Pittel, B., Stable husbands, Random Struct. Algorithms, 1, 1-14 (1991) · Zbl 0719.05001 · doi:10.1002/rsa.3240010102
[30] Kontogiannis, SC; Spirakis, PG, On the support size of stable strategies in random games, Theor. Comput. Sci., 410, 933-942 (2009) · Zbl 1157.91311 · doi:10.1016/j.tcs.2008.12.056
[31] Mehta, ML, Random Matrices (1991), London: Academic Press, London · Zbl 0780.60014
[32] Markowitz, HM, Portfolio selection, J. Finance, 7, 77-91 (1952)
[33] Mukherjee, L., Singh, V., Peng, J., Hinrichs, C.: Learning kernels for variants of normalized cuts: convex relaxations and applications. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, June 13-18 (2010)
[34] Pittel, B., On random quadratic forms: supports of potential local maxima, J. Appl. Probab., 55, 1113-1130 (2018) · Zbl 1407.37122 · doi:10.1017/jpr.2018.74
[35] Scozzari, A.; Tardella, F., A clique algorithm for standard quadratic programming, Discrete Appl. Math., 156, 2439-2448 (2008) · Zbl 1163.90691 · doi:10.1016/j.dam.2007.09.020
[36] Yang, S.; Li, X., Algorithms for determining the copositivity of a given matrix, Linear Algebra Appl., 430, 609-618 (2009) · Zbl 1161.65033 · doi:10.1016/j.laa.2008.07.028
[37] Ye, Y., Lei, L., Ju, C.: HONES: a fast and tuning-free homotopy method for online Newton step. arXiv:1610.04329v2 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.