×

Stability and horizon formation during dissipative collapse. (English) Zbl 1460.83058

Summary: We investigate the role played by density inhomogeneities and dissipation on the final outcome of collapse of a self-gravitating sphere. By imposing a perturbative scheme on the thermodynamical variables and gravitational potentials we track the evolution of the collapse process starting off with an initially static perfect fluid sphere which is shear-free. The collapsing core dissipates energy in the form of a radial heat flux with the exterior spacetime being filled with a superposition of null energy and an anisotropic string distribution. The ensuing dynamical process slowly evolves into a shear-like regime with contributions from the heat flux and density fluctuations. We show that the anisotropy due to the presence of the strings drives the stellar fluid towards instability with this effect being enhanced by the density inhomogeneity. An interesting and novel consequence of this collapse is the earlier formation of the horizon.

MSC:

83C75 Space-time singularities, cosmic censorship, etc.
83C57 Black holes
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
85A05 Galactic and stellar dynamics

References:

[1] Oppenheimer, JR; Snyder, H., On continued gravitational contraction, Phys. Rev. D, 56, 455 (1939) · Zbl 0022.28104 · doi:10.1103/PhysRev.56.455
[2] Vaidya, PC, The gravitational field of a radiating star, Proc. Indian Acad. Sci. A, 33, 264 (1951) · Zbl 0044.42202 · doi:10.1007/BF03173260
[3] Santos, NO, Non-adiabatic radiating collapse, Mon. Not. R. Astron. Soc., 216, 403 (1985) · doi:10.1093/mnras/216.2.403
[4] Mkenyeleye, MD; Goswami, R.; Maharaj, SD, Gravitational collapse of generalised Vaidya spacetime, Phys. Rev. D, 92, 024041 (2015) · doi:10.1103/PhysRevD.92.024041
[5] Sharma, R.; Tikekar, R., Non-adiabatic radiative collapse of a relativistic star under different initial conditions, Pramana J. Phys., 79, 501 (2012) · doi:10.1007/s12043-012-0323-4
[6] Sharma, R.; Tikekar, R., Space-time inhomogeneity, anisotropy and gravitational collapse, Gen.Relativ.Gravit, 44, 2503-2520 (2012) · Zbl 1255.83091 · doi:10.1007/s10714-012-1406-8
[7] Sharma, R.; Das, S.; Rahaman, F.; Shit, GC, Gravitational collapse of a circularly symmetric star in an anti-de Sitter spacetime, Astrophys. Space Sci., 259, 40 (2015) · doi:10.1007/s10509-015-2486-1
[8] Govender, M.; Bogadi, R.; Sharma, R.; Das, S., Gravitational collapse in spatially isotropic coordinates, Astrophys. Space Sci., 361, 33 (2016) · doi:10.1007/s10509-015-2616-9
[9] Govender, M.; Reddy, KP; Maharaj, SD, The role of shear in dissipative gravitational collapse, Int. J. Mod. Phys. D, 23, 1450013 (2014) · Zbl 1284.85008 · doi:10.1142/S0218271814500138
[10] Chandrasekhar, S., The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity, Astrophys. J., 140, 417 (1964) · Zbl 0151.47102 · doi:10.1086/147938
[11] Herrera, L.; Le Denmat, G.; Santos, NO, Dynamical instability for non-adiabatic spherical collapse, Mon. Not. R. Astron. Soc., 237, 257 (1989) · Zbl 0668.76158 · doi:10.1093/mnras/237.1.257
[12] Chan, R.; Herrera, L.; Santos, NO, Dynamical instability for radiating anisotropic collapse, Mon. Not. R. Astron. Soc., 265, 533 (1993) · doi:10.1093/mnras/265.3.533
[13] Herrera, L.; Le Denmat, G.; Santos, NO, Dynamical instability and the expansion-free condition, Gen.Relativ.Gravit, 44, 1143 (2012) · Zbl 1241.83023 · doi:10.1007/s10714-012-1331-x
[14] Bonnor, WB; de Oliveira, AKG; Santos, NO, Radiating spherical collapse, Phys. Rep., 181, 269 (1989) · doi:10.1016/0370-1573(89)90069-0
[15] Glass, EN; Krisch, JP, Radiation and string atmosphere for relativistic stars, Phys. Rev. D, 57, 5945 (1998) · doi:10.1103/PhysRevD.57.R5945
[16] Glass, EN; Krisch, JP, Two-fluid atmosphere for relativistic stars, Class. Quantum Grav., 16, 1175 (1999) · Zbl 0942.83023 · doi:10.1088/0264-9381/16/4/007
[17] Maharaj, SD; Govender, M., Radiating collapse with vanishing Weyl stresses, Int. J. Mod. Phys. D, 14, 667-676 (2005) · Zbl 1079.83015 · doi:10.1142/S0218271805006584
[18] Maharaj, SD; Govender, G.; Govender, M., Radiating stars with generalised Vaidya atmospheres, Gen.Relativ.Gravit, 44, 1089-1099 (2012) · Zbl 1238.85016 · doi:10.1007/s10714-012-1329-4
[19] Husain, V., Exact solutions for null fluid collapse, Phys. Rev. D, 53, 1759 (1996) · doi:10.1103/PhysRevD.53.R1759
[20] Wang, A.; Wu, Y., Generalized Vaidya solutions, Gen.Relativ.Gravit, 31, 107 (1999) · Zbl 1071.83514 · doi:10.1023/A:1018819521971
[21] Govinder, KS; Govender, M., Gravitational collapse of null radiation and a string fluid, Phys. Rev. D, 68, 024034 (2003) · doi:10.1103/PhysRevD.68.024034
[22] de Oliveira, AKG; Santos, NO; Kolassis, CA, Collapse of a radiating star, Mon. Not. R. Astron. Soc., 216, 1001 (1985) · Zbl 0572.76129 · doi:10.1093/mnras/216.4.1001
[23] Govender, M.; Thirukkanesh, S., Anisotropic static spheres with linear equation of state in isotropic coordinates, Astrophys. Space Sci., 358, 16 (2015) · doi:10.1007/s10509-015-2431-3
[24] Reddy, KP; Govender, M.; Maharaj, SD, Impact of anisotropic stresses during dissipative gravitational collapse, Gen.Relativ.Gravit, 47, 35 (2015) · Zbl 1317.83062 · doi:10.1007/s10714-015-1880-x
[25] Ghosh, SG; Deshkar, DW, Exact nonspherical radiating collapse, Int. J. Mod. Phys. A, 22, 2945 (2007) · Zbl 1142.85309 · doi:10.1142/S0217751X07036270
[26] Brassel, PB; Goswami, R.; Maharaj, SD, Collapsing radiating stars with various equations of state, Phys. Rev. D, 95, 124051 (2017) · doi:10.1103/PhysRevD.95.124051
[27] Naidu, NF; Govender, M.; Thirukkanesh, S.; Maharaj, SD, Radiating fluid sphere immersed in an anisotropic atmosphere, Gen.Relativ.Gravit, 49, 95 (2017) · Zbl 1381.85004 · doi:10.1007/s10714-017-2258-z
[28] Govender, G.; Brassel, PB; Maharaj, SD, The effect of a two-fluid atmosphere on relativistic stars, Eur. Phys. J. C, 75, 324 (2015) · doi:10.1140/epjc/s10052-015-3548-9
[29] Raychaudhuri, AK; Maiti, SR, Conformal flatness and the Schwarzschild interior solution, J. Math. Phys., 20, 245 (1979) · doi:10.1063/1.524071
[30] Chan, R.; Kichenassamy, S.; Le Denmat, G.; Santos, NO, Heat flow and dynamical instability in spherical collapse, Mon. Not. R. Astron. Soc., 239, 91 (1989) · Zbl 0673.76133 · doi:10.1093/mnras/239.1.91
[31] Govender, M.; Mewalal, N.; Hansraj, S., The role of an equation of state in the dynamical (in)stability of a radiating star, Eur. Phys. J. C, 79, 24 (2019) · doi:10.1140/epjc/s10052-019-6534-9
[32] Govender, M.; Govinder, KS; Maharaj, SD; Sharma, R.; Mukherjee, S.; Dey, TK, Radiating spherical collapse with heat flow, Int. J. Mod. Phys. D, 12, 667 (2003) · doi:10.1142/S0218271803003086
[33] Pinheiro, G.; Chan, R., Radiating gravitational collapse with shear viscosity revisited, Gen.Relativ.Gravit, 40, 2149 (2008) · Zbl 1152.83396 · doi:10.1007/s10714-008-0622-8
[34] Govender, M., Nonadiabatic spherical collapse with a two-fluid atmosphere, Int. J. Mod. Phys. D, 22, 1350049 (2013) · doi:10.1142/S0218271813500491
[35] de Oliveira, AKG; de Pacheco, FJA; Santos, NO, More about collapse of a radiating star, MNRAS, 220, 405 (1986) · Zbl 0622.76139 · doi:10.1093/mnras/220.2.405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.