×

\(p\)-adic integral geometry. (English) Zbl 1457.53054

Summary: We prove a \(p\)-adic version of the integral geometry formula for averaging the intersection of two \(p\)-adic projective varieties. We apply this result to give bounds on the number of points in the modulo \(p^m\) reduction of a projective variety (reproving a result by Oesterlé) and to the study of random \(p\)-adic polynomial systems of equations.

MSC:

53C65 Integral geometry
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)

References:

[1] D. Amelunxen and P. Bürgisser, Probabilistic analysis of the Grassmann condition number, Found. Comput. Math., 15 (2015), pp. 3-51. · Zbl 1309.90075
[2] S. Alesker, Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations, J. Differential Geom., 63 (2003), pp. 63-95. · Zbl 1073.52004
[3] P. Bürgisser and F. Cucker, Condition: The Geometry of Numerical Algorithms, Grundlehren Math. Wiss. 349, Springer, Heidelberg, 2013. · Zbl 1280.65041
[4] A. Bernig and J. H. G. Fu, Hermitian integral geometry, Ann. of Math. (2), 173 (2011), pp. 907-945. · Zbl 1230.52014
[5] P. Breiding, K. Kozhasov, and A. Lerario, On the geometry of the set of symmetric matrices with repeated eigenvalues, Arnold Math. J., 4 (2018), pp. 423-443. · Zbl 07146873
[6] X. Caruso, Computations with \(p\)-Adic Numbers, https://arxiv.org/abs/1701.06794, 2017.
[7] K.-K. Choi, On the distribution of points in projective space of bounded height, Trans. Amer. Math. Soc., 352 (2000), pp. 1071-1111. · Zbl 0938.11034
[8] K. Conrad, A Multivariable Hensel’s Lemma, https://kconrad.math.uconn.edu/blurbs/gradnumthy/multivarhensel.pdf.
[9] X. Caruso, D. Roe, and T. Vaccon, \(p\)-adic stability in linear algebra, in Proceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2015, pp. 101-108. · Zbl 1346.68275
[10] J. W. Demmel, The probability that a numerical analysis problem is difficult, Math. Comp., 50 (1988), pp. 449-480. · Zbl 0657.65066
[11] J. D. Dixon, Exact solution of linear equations using \(p\)-adic expansions, Numer. Math., 40 (1982), pp. 137-141. · Zbl 0492.65016
[12] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, and E. I. Zelenov, \(p\)-adic mathematical physics: The first 30 years, p-Adic Numbers Ultrametric Anal. Appl., 9 (2017), pp. 87-121. · Zbl 1394.81009
[13] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.), 32 (1995), pp. 1-37. · Zbl 0820.34038
[14] S. N. Evans, The expected number of zeros of a random system of \(p\)-adic polynomials, Electron. Commun. Probab., 11 (2006), pp. 278-290. · Zbl 1130.60010
[15] B. Fisher, A note on Hensel’s lemma in several variables, Proc. Amer. Math. Soc., 125 (1997), pp. 3185-3189. · Zbl 0883.13021
[16] R. Howard, The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc., 106 (1993). · Zbl 0810.53057
[17] J. Igusa, An Introduction to the Theory of Local Zeta Functions, AMS/IP Stud. Adv. Math. 14, AMS, Providence, RI, 2000. · Zbl 0959.11047
[18] M. Kiderlen, Introduction into integral geometry and stereology, in Stochastic Geometry, Spatial Statistics and Random Fields, Lecture Notes in Math. 2068, Springer, Heidelberg, 2013, pp. 21-48. · Zbl 1296.53148
[19] A. Kulkarni, Solving p-adic polynomial systems via iterative eigenvector algorithms, Linear Multilinear Algebra, (2020), https://doi.org/10.1080/03081087.2020.1743633. · Zbl 1485.15011
[20] Y. El Maazouz and N. M. Tran, Statistics of Gaussians on Local Fields and Their Tropicalizations, arXiv:1909.00559, 2019.
[21] J. Oesterlé, Réduction modulo \(p^n\) des sous-ensembles analytiques fermés de \({Z}^N_p\), Invent. Math., 66 (1982), pp. 325-341. · Zbl 0473.12015
[22] L. A. Santaló, Integral Geometry and Geometric Probability, 2nd ed., Cambridge University Press, Cambridge, UK, 2004. · Zbl 1116.53050
[23] P. Schneider, \(p\)-Adic Lie Groups, Grundlehren Math. Wiss. 344, Springer, Heidelberg, 2011. · Zbl 1223.22008
[24] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math., 54 (1981), pp. 323-401.
[25] M. Shub and S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities, in Computational Algebraic Geometry Progr. Math. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 267-285. · Zbl 0851.65031
[26] R. Schneider and J. A. Wieacker, Integral geometry, in Handbook of Convex Geometry, North-Holland, Amsterdam, 1993, pp. 1349-1390. · Zbl 0789.52009
[27] R. Schneider and W. Weil, Stochastic and Integral Geometry, Probab. Appl. (N. Y.), Springer-Verlag, Berlin, 2008. · Zbl 1175.60003
[28] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics 1, World Scientific, River Edge, NJ, 1994. · Zbl 0864.46048
[29] W. Weil, Kinematic integral formulas for convex bodies, in Contributions to Geometry Birkhäuser, Basel, 1979, pp. 60-75. · Zbl 0439.52006
[30] A. Weil, Adeles and Algebraic Groups, Progr. Math. 23, Birkhäuser, Basel, 1982. · Zbl 0118.15801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.