×

Optimal CAR T-cell immunotherapy strategies for a leukemia treatment model. (English) Zbl 1458.92044

In this article, was formulated and solved the optimal control problem with two bounded controls using the Pontryagin maximum principle. A controlled model of CAR T-cell immunotherapy, which describes the dynamics of CAR T-cells, normal or healthy B-cells, cancer cells and cytokines as four ordinary differential equations of the Lotka-Volterra type with two bounded controls. The first is the concentration of injected CAR immune T cells and its effect on system parameters. The second reflects the effect of an immunosuppressant such as tocilizumab and its role in preventing cytokine storms. The authors formulate an optimal control problem to minimize tumor cells and cytokine concentration. Then the Pontryagin maximum principle is applied and the type of optimal controls depending on the switching functions is found. It is revealed that the second optimal control, reflecting the suppressive effect of a possible “cytokine storm”, is constant, taking the maximum value over the entire time interval of the treatment period. Analytically examining the properties of the first switching function, the authors find that the corresponding optimal control takes a maximum value at the end of the time interval. Therefore, the type of the switching function is found, which determines the behavior of the first optimal control responsible for the injection schedule CAR. It turned out that this function has no more than two switches, and that, depending on the parameters of the model, it can accept one of five optimal treatment scenarios. Thus, a controlled model of CAR T-cell immunotherapy was created and the problem of its optimal control was solved.

MSC:

92C50 Medical applications (general)
49J15 Existence theories for optimal control problems involving ordinary differential equations

Software:

Bocop

References:

[1] Heymach, J.; Krilov, L.; Alberg, A.; Baxter, N.; Chang, S.M.; Corcoran, R.B.; Dale, W.; DeMichele, A.; Diefenbach, C.S.M.; Dreicer, R.; Clinical cancer advances 2018: Annual report on progress against cancer from the American Society of Clinical Oncology; J. Clin. Oncol.: 2018; Volume 36 ,1020-1044.
[2] June, C.H.; Sadelain, M.; Chimeric antigen receptor therapy; N. Engl. J. Med.: 2018; Volume 379 ,64-73.
[3] Davenport, A.J.; Jenkins, M.R.; Ritchie, D.S.; Prince, H.M.; Trapani, J.A.; Kershaw, M.H.; Darcy, P.K.; Neeson, P.J.; CAR-T cells are serial killers; Oncoimmunology: 2015; Volume 4 ,e1053684.
[4] Brentjens, R.; Yeh, R.; Bernal, Y.; Riviere, I.; Sadelain, M.; Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial; Mol. Ther.: 2010; Volume 18 ,666-668.
[5] Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H.; T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia; Sci. Transl. Med.: 2011; Volume 3 ,95ra73.
[6] Kochenderfer, J.N.; Dudley, M.E.; Feldman, S.A.; Wilson, W.H.; Spaner, D.E.; Maric, I.; Stetler-Stevenson, M.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor transduced T cells; Blood: 2012; Volume 119 ,2709-2720.
[7] Byun, D.J.; Wolchok, J.D.; Rosenberg, L.M.; Girotra, M.; Cancer immunotherapy—Immune checkpoint blockade and associated endocrinopathies; Nat. Rev. Endocrinol.: 2017; Volume 13 ,195-207.
[8] June, C.H.; Warshauer, J.T.; Bluestone, J.A.; Is autoimmunity the Achilles’ heel of cancer immunotherapy?; Nat. Med.: 2017; Volume 23 ,540-547.
[9] Davenport, A.J.; Cross, R.S.; Watson, K.A.; Liao, Y.; Shi, W.; Prince, H.M.; Beavis, P.A.; Trapani, J.A.; Kershaw, M.H.; Ritchie, D.S.; Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity; Proc. Natl. Acad. Sci. USA: 2018; Volume 115 ,2068-2076.
[10] Sadelain, M.; Brentjens, R.; Rivière, I.; The basic principles of chimeric antigen receptor design; Cancer Discov.: 2013; Volume 3 ,388-398.
[11] Dotti, G.; Gottschalk, S.; Savoldo, B.; Brenner, M.K.; Design and development of therapies using chimeric antigen receptor-expressing T cells; Immunol. Rev.: 2014; Volume 257 ,107-126.
[12] Clapp, G.; Levy, D.; A review of mathematical models for leukemia and lymphoma; Drug. Discov. Today Dis. Model.: 2015; Volume 16 ,1-6.
[13] Pillis, L.G.; Radunskaya, A.; A Mathematical tumor model with immune resistance and drug therapy: An optimal control approach; J. Theor. Med.: 2001; Volume 3 ,79-100. · Zbl 0985.92023
[14] Mostolizadeh, R.; Afsharnezhad, Z.; Marciniak-Czochra, A.; Mathematical model of chimeric antigen receptor (CAR) T cell therapy with presence of cytokine; Numer. Algebr. Control Optim.: 2018; Volume 8 ,63-80. · Zbl 1406.92318
[15] Khailov, E.N.; Klimenkova, A.D.; Korobeinikov, A.; Optimal Control for Anti-cancer Therapy; Extended Abstracts Spring 2018. Trends in Mathematics: Basel, Switzerland 2019; Volume Volume 11 ,35-43. · Zbl 1444.92043
[16] Grigorenko, N.L.; Khailov, E.N.; Klimenkova, A.D.; Korobeinikov, A.; Program and positional control strategies for the Lotka-Volterra competition model; Stability, Control and Differential Games, Proceedings of the International Conference “Stability, Control, Differential Games” (SCDG2019), Yekaterinburg, Russia, 16-20 September 2019: Cham, Switzerland 2020; ,39-49. · Zbl 1451.92166
[17] Grigorenko, N.L.; Khailov, E.N.; Grigorieva, E.V.; Klimenkova, A.D.; Optimal strategies in the treatment of cancers in the Lotka-Volterra mathematical model of competition; Tr. Inst. Mat. Mekhaniki URO RAN: 2020; Volume 26 ,71-88. · Zbl 1470.92142
[18] Lee, E.B.; Marcus, L.; ; Foundations of Optimal Control Theory: New York, NY, USA 1967; . · Zbl 0159.13201
[19] Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F.; ; Mathematical Theory of Optimal Processes: New York, NY, USA 1962; . · Zbl 0102.32001
[20] Hartman, P.; ; Ordinary Differential Equations: New York, NY, USA 1964; . · Zbl 0125.32102
[21] Grigorieva, E.V.; Khailov, E.N.; Korobeinikov, A.; Parametrization of the attainable set for a nonlinear control model of a biochemical process; Math. Biosci. Eng.: 2013; Volume 10 ,1067-1094. · Zbl 1273.49004
[22] Grigorieva, E.V.; Khailov, E.N.; Korobeinikov, A.; Optimal control for a SIR epidemic model with nonlinear incidence rate; Math. Model. Nat. Phenom.: 2016; Volume 11 ,90-105. · Zbl 1385.49009
[23] Grigorieva, E.V.; Khailov, E.N.; Korobeinikov, A.; Optimal control for an SEIR epidemic model with nonlinear incidence rate; Stud. Appl. Math.: 2018; Volume 141 ,353-398. · Zbl 1420.35437
[24] Dmitruk, A.V.; A generalized estimate on the number of zeros for solutions of a class of linear differential equations; SIAM J. Control Optim.: 1992; Volume 30 ,1087-1091. · Zbl 0761.34010
[25] Grigorieva, E.; Khailov, E.; Deignan, P.; Optimal treatment strategies for control model of psoriasis; Proceedings of the SIAM Conference on Control and its Applications (CT17): ; ,86-93. · Zbl 07876475
[26] Grigorieva, E.; Khailov, E.; Determination of the optimal controls for an Ebola epidemic model; Discret. Cont. Dyn.-S: 2018; Volume 11 ,1071-1101. · Zbl 1407.49061
[27] Grigorieva, E.V.; Khailov, E.N.; Korobeinikov, A.; Optimal controls of the highly active antiretroviral therapy; Abstr. Appl. Anal.: 2020; Volume 2020 ,8107106. · Zbl 1457.92078
[28] Krasnosel’skii, M.A.; ; The Operator of Translation along the Trajectories of Differential Equations: Providence, RI, USA 1968; . · Zbl 1398.34003
[29] Demidovich, B.P.; ; Lectures on Stability Theory: Moscow, Russia 1967; . · Zbl 0155.41601
[30] Castiglione, F.; Piccoli, B.; Cancer immunotherapy, mathematical modeling and optimal control; J. Theor. Biol.: 2007; Volume 247 ,723-732. · Zbl 1455.92068
[31] Barros, L.R.; Rodrigues, B.J.; Almeida, R.C.; CAR-T cell goes on a mathematical model; J. Cell. Immunol.: 2020; Volume 2 ,31-37.
[32] Pillis, L.G.; Radunskaya, A.; The dynamics of an optimally controlled tumor model: A case study; Math. Comput. Model.: 2003; Volume 37 ,1221-1244. · Zbl 1043.92018
[33] Bonnans, F.; Martinon, P.; Giorgi, D.; Grélard, V.; Maindrault, S.; Tissot, O.; Liu, J.; BOCOP 2.2.0—User Guide; 2019; .
[34] Paszkiewicz, P.J.; Frasle, S.P.; Srivastava, S.; Sommermeyer, D.; Hudecek, M.; Drexler, I.; Sadelain, M.; Liu, L.; Jensen, M.C.; Riddell, S.R.; Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia; J. Clin. Investig.: 2016; Volume 126 ,4262-4272.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.