×

Games with adaptation and mitigation. (English) Zbl 1457.91284

Summary: We formulate and study a nonlinear game of \(n\) symmetric countries that produce, pollute, and spend part of their revenue on pollution mitigation and environmental adaptation. The optimal emission, adaptation, and mitigation investments are analyzed in both Nash equilibrium and cooperative cases. Modeling assumptions and outcomes are compared to other publications in this fast-developing area of environmental economics. In particular, our analysis implies that: (a) mitigation is more effective than adaptation in a crowded multi-country world; (b) mitigation increases the effectiveness of adaptation; (c) the optimal ratio between mitigation and adaptation investments in the competitive case is larger for more productive countries and is smaller when more countries are involved in the game.

MSC:

91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
91A10 Noncooperative games
91A80 Applications of game theory

References:

[1] Our World in Data; ; .
[2] Smulders, S.; Gradus, R.; Pollution mitigation and long-term growth; Eur. J. Political Econ.: 1996; Volume 12 ,505-532.
[3] Vellinga, N.; Multiplicative utility and the influence of environmental care on the short-term economic growth rate; Econ. Model.: 1999; Volume 16 ,307-330.
[4] Jones, L.E.; Manuelli, R.E.; Endogenous policy choice: The case of pollution and growth; Rev. Econ. Dyn.: 2001; Volume 4 ,369-405.
[5] Bréchet, T.; Hritonenko, N.; Yatsenko, Y.; Adaptation and mitigation in long-term climate policy; Environ. Resour. Econ.: 2013; Volume 55 ,217-243.
[6] Agrawala, S.; Bosello, F.; Carraro, C.; de Cian, E.; Lanzi, E.; Adapting to climate change: Costs, benefits, and modelling approaches; Int. Rev. Environ. Resour. Econ.: 2011; Volume 5 ,245-284.
[7] De Bruin, K.; Dellink, R.; Tol, R.; AD-DICE: An implementation of adaptation in the DICE Model; Clim. Chang.: 2009; Volume 95 ,63-81.
[8] Bahn, O.; de Bruin, K.; Fertel, C.; Will adaptation delay the transition to clean energy systems? An analysis with AD-MERGE; Energy J.: 2019; Volume 40 ,207-233.
[9] Buob, S.; Stephan, G.; To mitigate or to adapt: How to combat with global climate change; Eur. J. Political Economy: 2011; Volume 27 ,1-16.
[10] Ebert, U.; Welsch, H.; Adaptation and mitigation in global pollution problems: Economic impacts of productivity, sensitivity, and adaptive capacity; Environ. Resour. Econ.: 2012; Volume 52 ,49-64.
[11] Benchekroun, H.; Taherkhani, F.; Adaptation and the allocation of pollution reduction costs; Dyn. Games Appl.: 2014; Volume 4 ,32-57. · Zbl 1300.91024
[12] Felgenhauer, T.; Webster, M.; Multiple adaptation types with mitigation: A framework for policy analysis; Glob. Environ. Chang.: 2013; Volume 23 ,1556-1565.
[13] Fankhauser, S.; Adaptation to climate change; Annu. Rev. Resour. Econ.: 2017; Volume 9 ,209-230.
[14] Hritonenko, N.; Yatsenko, Y.; Modeling of environmental adaptation: Amenity vs productivity and modernization; Clim. Chang. Econ.: 2013; Volume 4 ,1-24.
[15] Hritonenko, N.; Yatsenko, Y.; Mitigation vs. adaptation: Analytic models for policy assessment; Environ. Modeling Assess.: 2016; Volume 21 ,619-627.
[16] Zemel, A.; Adaptation, mitigation, and risk: An analytic approach; J. Econ. Dyn. Control.: 2015; Volume 51 ,133-147. · Zbl 1402.91391
[17] Kama, A.A.L.; Pommeret, A.; Supplementing domestic mitigation and adaptation with emissions reduction abroad to face climate change; Environ. Resour. Econ.: 2017; Volume 68 ,875-891.
[18] Breton, M.; Sbragia, L.; Adaptation to climate change: Commitment and timing issues; Environ. Resour. Econ.: 2017; Volume 68 ,975-995.
[19] Yatsenko, Y.; ; Models and Games with Adaptation and Mitigation: St. Petersburg, Russia 2015; .
[20] Bréchet, T.; Hritonenko, N.; Yatsenko, Y.; Domestic environmental policy and international cooperation for global commons; Resour. Energy Econ.: 2016; Volume 44 ,183-205.
[21] Farnham, M.; Kennedy, P.; Adapting to climate change: Equilibrium welfare implications for large and small economies; Environ. Resour. Econ.: 2015; Volume 61 ,345-363.
[22] Lazkano, I.; Marrouch, W.; Nkuiya, B.; Adaptation to climate change: How does heterogeneity in adaptation costs affect climate coalitions?; Environ. Dev. Econ.: 2016; Volume 21 ,812-838.
[23] Bayramoglu, B.; Finus, M.; Jacques, J.-F.; Climate agreements in a mitigation-adaptation game; J. Public Econ.: 2018; Volume 165 ,101-113.
[24] Nkuiya, B.; Stability of international environmental agreements under isoelastic utility; Resour. Energy Econ.: 2020; Volume 59 ,101128.
[25] Hritonenko, N.; Yatsenko, Y.; Bréchet, T.; On North-South interaction and environmental adaptation; J. Environ. Econ. Policy: 2020; Volume 9 ,319-337.
[26] Yatsenko, Y.; Hritonenko, N.; Bréchet, T.; Modeling of environmental adaptation versus pollution mitigation; Math. Model. Natural Phenom.: 2014; Volume 9 ,227-237. · Zbl 1306.91104
[27] Legras, S.; Zaccour, G.; Temporal flexibility of permit trading when pollutants are correlated; Automatica: 2011; Volume 47 ,909-919. · Zbl 1233.49020
[28] Benchekroun, H.; Chaudhuri, A.R.; Transboundary pollution and clean technologies; Resour. Energy Econ.: 2014; Volume 36 ,601-619.
[29] Fleurbaey, M.; Schokkaert, E.; Behavioral welfare economics and edistribution; American Econ. J. Microecon.: 2013; Volume 5 ,180-205.
[30] Watkiss, P.; Benzie, M.; Klein, R.J.T.; The complementarity and comparability of climate change adaptation and mitigation; Wires Clim. Chang.: 2015; Volume 6 ,541-557.
[31] Roco, L.; Engler, A.; Bravo-Ureta, B.; Jara-Rojas, R.; Farm level adaptation decisions to face climatic change and variability: Evidence from Central Chile; Environ. Sci. Policy: 2014; Volume 44 ,86-96.
[32] Catalano, M.; Forni, L.; Pezzolla, E.; Climate-change adaptation: The role of fiscal policy; Resour. Energy Econ.: 2020; Volume 59 ,101111.
[33] Eyckmans, J.; Fankhauser, S.; Kverndokk, S.; Development aid and climate finance; Environ. Resour. Econ.: 2016; Volume 63 ,429-450.
[34] Bonen, A.; Loungani, P.; Semmler, W.; Koch, S.; ; Investing to Mitigate and Adapt to Climate Change: A Framework Model: Washington, DC, USA 2016; .
[35] Duan, H.; Zhang, G.; Wang, S.; Fan, Y.; Balancing China’s climate damage risk against emission control costs; Mitig. Adapt. Strateg. Glob. Chang.: 2018; Volume 23 ,387-403.
[36] Vardar, B.; Zaccour, G.; The strategic impact of adaptation in a transboundary pollution dynamic game; Environ. Modeling Assess.: 2018; Volume 23 ,653-669.
[37] Weiler, F.; Klock, C.; Dornan, M.; Vulnerability, good governance, or donor interests? The allocation of aid for climate change adaptation; World Dev.: 2018; Volume 104 ,65-77.
[38] Schumacher, I.; Climate policy must favour mitigation over adaptation; Environ. Resour. Econ.: 2019; Volume 74 ,1519-1531.
[39] Sakamoto, H.; Ikefuji, M.; Magnus, J.R.; Adaptation for mitigation; Environ. Resour. Econ.: 2020; Volume 75 ,457-484.
[40] Bosello, F.; Carraro, C.; De Cian, E.; Climate policy and the optimal balance between mitigation, adaptation and unavoided damage; Clim. Chang. Econ.: 2010; Volume 1 ,71-92.
[41] Hall, J.; Brown, S.; Nicholls, R.; Pidgeon, N.; Watson, R.; Proportionate adaptation; Nat. Clim. Chang.: 2012; Volume 2 ,833-834.
[42] Caparrs, A.; Just, R.E.; Zilberman, D.; Dynamic relative standards versus emission taxes in a putty-clay model; J. Assoc. Environ. Resour. Econ.: 2015; Volume 2 ,277-308.
[43] Boucekkine, R.R.; Prieur, F.; Puzon, K.; On the timing of political regime changes in resource-dependent economies; Eur. Econ. Rev.: 2016; Volume 85 ,188-207.
[44] Kiseleva, T.; Heterogeneous beliefs and climate catastrophes; Environ. Resour. Econ.: 2016; Volume 65 ,599-622.
[45] Habla, W.; Roeder, K.; The political economy of mitigation and adaptation; Eur. Econ. Rev.: 2017; Volume 92 ,239-257.
[46] Mavi, C.A.; Can harmful events be another source of environmental traps?; J. Math. Econ.: 2020; Volume 89 ,29-46. · Zbl 1444.91165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.